题目内容

6.已知双曲线x2-y2=1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1⊥PF2,则以F1,F2为焦点且经过P的椭圆的离心率等于(  )
A..$\frac{{\sqrt{5}}}{5}$B..$\frac{{\sqrt{6}}}{3}$C..$\frac{{\sqrt{2}}}{2}$D..$\frac{1}{2}$

分析 根据双曲线方程为x2-y2=1,可得焦距,因为PF1⊥PF2,所以|PF1|2+|PF2|2=|F1F2|2.再结合双曲线的定义,得到||PF1|-|PF2||=2,最后联解、配方,可得(|PF1|+|PF2|)2=12,从而得到|PF1|+|PF2|的值,即可求出以F1,F2为焦点且经过P的椭圆的离心率.

解答 解:∵双曲线方程为x2-y2=1,
∴a2=b2=1,c2=a2+b2=2,可得|F1F2|=2$\sqrt{2}$,
∵PF1⊥PF2
∴|PF1|2+|PF2|2=|F1F2|2=8
又∵P为双曲线x2-y2=1上一点,
∴||PF1|-|PF2||=2a=2,
∴(|PF1|-|PF2|)2=4,
因此(|PF1|+|PF2|)2=2(|PF1|2+|PF2|2)-(|PF1|-|PF2|)2=12
∴|PF1|+|PF2|的值为2$\sqrt{3}$,
∴以F1,F2为焦点且经过P的椭圆的离心率$\frac{2\sqrt{2}}{2\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.
故选B.

点评 本题根据已知双曲线上对两个焦点的张角为直角的两条焦半径,求它们长度的和、以F1,F2为焦点且经过P的椭圆的离心率,着重考查了双曲线的基本概念与简单性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网