题目内容
16.定义在[-2,2]上的偶函数f(x),当x≥0时,f(x)单调递减,若f(1-m)<f(m)成立,求m的取值范围[-1,$\frac{1}{2}$).分析 根据f(x)为定义在[-2,2]上的偶函数,以及x≥0时f(x)单调递减便可由f(1-m)<f(m)得到:$\left\{\begin{array}{l}{-2≤1-m≤2}\\{-2≤m≤2}\\{|1-m|>|m|}\end{array}\right.$,从而解该不等式组便可得出m的取值范围.
解答 解:∵f(x)为定义在[-2,2]上的偶函数;
∴由f(1-m)<f(m)得,f(|1-m|)<f(|m|);
又x≥0时,f(x)单调递减;
∴$\left\{\begin{array}{l}{-2≤1-m≤2}\\{-2≤m≤2}\\{|1-m|>|m|}\end{array}\right.$;
解得$-1≤m<\frac{1}{2}$;
∴m的取值范围为$[-1,\frac{1}{2})$.
故答案为:[$-1,\frac{1}{2}$).
点评 考查偶函数的定义,函数定义域的概念,以及根据函数单调性解不等式的方法.
练习册系列答案
相关题目
1.已知AC、BD分别为圆O:x2+y2=4的两条垂直于坐标轴的弦,且AC、BD相交于点M(1,$\sqrt{2}$),则四边形ABCD的面积为( )
| A. | 2$\sqrt{6}$ | B. | 3$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | $\frac{3\sqrt{2}}{2}$ |
8.设向量$\overrightarrow{AB}$=(2sinx,-1),$\overrightarrow{CD}$=(3,4),x∈(0,π),当|$\overrightarrow{AB}$|取最大值时,向量$\overrightarrow{AB}$在$\overrightarrow{CD}$方向上的投影为( )
| A. | $\frac{2}{5}$ | B. | $\frac{2}{5}$或-2 | C. | $\frac{3}{5}$ | D. | $\frac{3}{5}$或-2 |
5.由点P向圆x2+y2=1引两条切线PA、PB,A、B是切点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值是( )
| A. | 6-4$\sqrt{2}$ | B. | 3-2$\sqrt{2}$ | C. | 2$\sqrt{2}$-3 | D. | 4$\sqrt{2}$-6 |