题目内容
在R上的函数f(x)满足:对于x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,判断函数f(x)+1的奇偶性.
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:利用赋值法求出f(0)=0,然后结婚函数奇偶性的定义即可得到结论.
解答:
解:令x1=x2=0,有f(0)=2f(0)+1,
故f(0)+1=0,f(0)=-1.
再令x1=-x2,f(0)=f(x1)+f(-x1)+1=-1,
∴f(x1)+1=-(f(-x1)+1).
即f(-x)+1=-[f(x)+1],
∴函数为奇函数.
故f(0)+1=0,f(0)=-1.
再令x1=-x2,f(0)=f(x1)+f(-x1)+1=-1,
∴f(x1)+1=-(f(-x1)+1).
即f(-x)+1=-[f(x)+1],
∴函数为奇函数.
点评:本题主要考查函数奇偶性的判断,利用函数的奇偶性的定义是解决本题的关键.
练习册系列答案
相关题目
已知正数a,b的等比中项是2,且m=b+
,n=a+
,则m+n的最小值是( )
| 1 |
| a |
| 1 |
| b |
| A、3 | B、4 | C、5 | D、6 |
已知四边形ABCD是菱形,若对角线
=(1,2),
=(-2,λ),则λ的值是( )
| AC |
| BD |
| A、-4 | B、4 | C、-1 | D、1 |
设复数Z=
+
i,则
=( )
| 1 |
| 2 |
| ||
| 2 |
| z | ||
|
| A、-z | ||
B、-
| ||
| C、z | ||
D、
|
一个总体分为A,B两层,其个体数之比为5:3,用分层抽样方法从总体中抽取一个容量为120的样本.则A层中应该抽取的个数为( )
| A、30 | B、45 | C、50 | D、75 |