题目内容
19.已知如下等式:2+4=6;
8+10+12=14+16;
18=20+22+24=26+28+30;
…
以此类推,则2018出现在第31个等式中.
分析 从已知等式分析,发现规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,即可得出结论.
解答 解:①2+4=6;
②8+10+12=14+16;
③18+20+22+24=26+28+30,…
其规律为:各等式首项分别为2×1,2(1+3),2(1+3+5),…,
所以第n个等式的首项为2[1+3+…+(2n-1)]=2×$\frac{n(1+2n-1)}{2}$=2n2,
当n=31时,等式的首项为2×312=1932,
当n=32时,等式的首项为2×322=2048,
所以2018在第31个等式中,
故答案为:31
点评 本题考查归纳推理,难点是根据能够找出数之间的内在规律,考查观察、分析、归纳的能力,是基础题.
练习册系列答案
相关题目
9.函数y=sin(ωx+θ-$\frac{π}{6}$)的最小正周期为π,且其图象向左平移$\frac{π}{6}$单位得到的函数为奇函数,则θ的一个可能值是( )
| A. | $\frac{π}{3}$ | B. | -$\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | -$\frac{π}{6}$ |
10.二项式${({\sqrt{x}-\frac{1}{{\sqrt{x}}}})^{12}}$展开式中,x3的系数是( )
| A. | -495 | B. | -220 | C. | 495 | D. | 220 |
14.已知函数f(x)=(2x-x2)ex,给以下四个结论:①f(x)>0的解集为{x|0<x<2};②$f({-\sqrt{2}})$是极小值,$f({\sqrt{2}})$是极大值;③f(x)有极小值,但无最小值;④f(x)有极小值,也有最小值.其中正确的是( )
| A. | ①② | B. | ①②③ | C. | ①②④ | D. | ②④ |
11.若数列{an}满足a1=1,an+1=nan+1,则第5项a5=( )
| A. | 5 | B. | 65 | C. | 89 | D. | 206 |
9.
定义在R上的函数f(x)和g(x),其各自导函数f′(x)f和g′(x)的图象如图所示,则函数F(x)=f(x)-g(x)极值点的情况是( )
| A. | 只有三个极大值点,无极小值点 | B. | 有两个极大值点,一个极小值点 | ||
| C. | 有一个极大值点,两个极小值点 | D. | 无极大值点,只有三个极小值点 |