题目内容
已知曲线的参数方程为
(θ为参数),则曲线的普通方程为( )
|
A、x2=y+1(-
| ||||
| B、x2=y+1(-1≤x≤1) | ||||
C、x2=1-y(-
| ||||
| D、x2=1-y(-1≤x≤1) |
考点:参数方程化成普通方程
专题:选作题,坐标系和参数方程
分析:先将x=sinθ+cosθ两边平方可得x2=1+sin2θ再将y=sin2θ代入即可得解,而x=sinθ+cosθ=
sin(θ-
),故-
≤x≤
.
| 2 |
| π |
| 4 |
| 2 |
| 2 |
解答:
解:先将x=sinθ+cosθ两边平方可得x2=1+sin2θ再将y=sin2θ代入可得x2=1+y
∵x=sinθ+cosθ=
sin(θ-
)
∴-
≤x≤
,
∴所求的普通方程为x2=1+y(-
≤x≤
).
故选:A.
∵x=sinθ+cosθ=
| 2 |
| π |
| 4 |
∴-
| 2 |
| 2 |
∴所求的普通方程为x2=1+y(-
| 2 |
| 2 |
故选:A.
点评:本题主要考查了参数方程化成普通方程,属于中档题.解题的关键是熟记同角的三角函数的基本关系式和二倍角公式!
练习册系列答案
相关题目
由下列各组命题构成的复合命题中,“p或q”为真命题,“p且q”为假命题,“非p”为真命题的一组为( )
| A、p:3为偶数,q:4为奇数 |
| B、p:π<3,q:5>3 |
| C、p:a∈{a,b},q:{a}?{a,b} |
| D、p:Q?R,q:N=Z |
把函数y=cos(x-
)向左平移m(m>0)个单位,所得的图象关于y轴对称,则m的最小值为( )
| π |
| 6 |
A、
| ||
B、
| ||
C、
| ||
D、
|
已知随机变量X服从正态分布N(1,4),且P(0≤X≤2)=0.68,则P(X>2)=( )
| A、0.34 | B、0.16 |
| C、0.84 | D、0.32 |
函数y=
+
的定义域为( )
| ||
| x |
| x-2x2 |
A、(
| ||
B、(0,
| ||
C、[0,
| ||
D、[
|
定义在R上的函数f(x)不是常数函数,且满足对任意的x有f(x-1)=f(x+1),f(2-x)=f(x),下列5个结论:
①f(x)是单调函数,
②f(x)的图象关于x=1对称,
③f(x)是周期函数,
④f(x)是偶函数,
⑤f(x)有最大值和最小值.
其中真命题是( )
①f(x)是单调函数,
②f(x)的图象关于x=1对称,
③f(x)是周期函数,
④f(x)是偶函数,
⑤f(x)有最大值和最小值.
其中真命题是( )
| A、②③④ | B、②③⑤ |
| C、①②⑤ | D、①②③ |
等差数列{an}中,已知a5+a7=10,Sn是{an}的前n项和,S11等于( )
| A、45 | B、50 | C、55 | D、60 |