题目内容

7.函数f(x)=x3-3|x|+1(x≤1)的零点所在区间为(  )
A.$(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{2},1)$B.$(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{3},\frac{1}{2})$C.$(-\frac{1}{2},-\frac{1}{3})$和$(\frac{1}{2},1)$D.$(-\frac{1}{3},-\frac{1}{4})$和$(\frac{1}{3},\frac{1}{2})$

分析 分别求出0<x≤1时,f($\frac{1}{3}$)=$\frac{1}{27}$>0,f($\frac{1}{2}$)=-$\frac{3}{8}$<0;x≤0,f(-$\frac{1}{3}$)=-$\frac{1}{27}$<0,f(-$\frac{1}{4}$)=$\frac{15}{64}$>0,并结合零点存在性定理,不难得到本题的答案.

解答 解:由题意,0<x≤1时,f($\frac{1}{3}$)=$\frac{1}{27}$>0,f($\frac{1}{2}$)=-$\frac{3}{8}$<0;
x≤0,f(-$\frac{1}{3}$)=-$\frac{1}{27}$<0,f(-$\frac{1}{4}$)=$\frac{15}{64}$>0,
∴函数f(x)=x3-3|x|+1(x≤1)的零点所在区间为(-$\frac{1}{3}$,-$\frac{1}{4}$)和$(\frac{1}{3},\frac{1}{2})$,
故选D,

点评 本题给出三次多项式函数,求它的一个含有零点的区间,着重考查了函数零点的定义及其存在性讨论等知识,属于基础题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网