ÌâÄ¿ÄÚÈÝ
16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC1£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔÆ½ÃæÖ±½Ç×ø±êϵxOyµÄÔµãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È½¨Á¢¼«×ø±êϵ£¬ÒÑÖªÖ±Ïßl£º¦Ñ£¨2cos¦È-sin¦È£©=6£®£¨1£©ÇóC1¼°Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì
£¨2£©ÔÚÇúÏßC1ÉÏÇóÒ»µãP£¬Ê¹µãPµ½Ö±ÏßlµÄ¾àÀë×îС£¬²¢Çó³ö´Ë×î´óÖµ£®
·ÖÎö £¨1£©ÓÉ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$µÃx2+y2=1£¬ÀûÓü«×ø±êÓëÖ±½Ç×ø±ê»¥»¯·½·¨µÃµ½Ö±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÀûÓòÎÊý£¬Çó³öÔ²Ðĵ½Ö±ÏߵľàÀ룬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©ÓÉ$\left\{\begin{array}{l}x=cos¦È\\ y=sin¦È\end{array}\right.$µÃx2+y2=1£¬
Óɦѣ¨2cos¦È-sin¦È£©=6£¬¡à2¦Ñcos¦È+¦Ñsin¦È=6£¬
Ö±ÏßµÄÖ±½Ç×ø±ê·½³ÌΪ£º2x+y-6=0£®
£¨2£©Ô²ÐÄΪ£¨0£¬0£©£¬r=1£¬Ô²Ðĵ½Ö±ÏߵľàÀë$d=\frac{{|{2cos¦È+sin¦È-6}|}}{{\sqrt{{2^2}+{1^2}}}}=\frac{{|{\sqrt{5}sin£¨¦È+¦Õ£©-6}|}}{{\sqrt{5}}}£¬sin¦Õ=\frac{{2\sqrt{5}}}{5}£¬cos¦Õ=\frac{{\sqrt{5}}}{5}$£¬
µ±$¦È+¦Õ=\frac{¦Ð}{2}$ʱPµ½Ö±ÏߵľàÀë×î¶Ì£¬´Ëʱ$x=cos¦È=sin¦Õ=\frac{{2\sqrt{5}}}{5}£¬y=sin¦È=co¦Õ=\frac{{\sqrt{5}}}{5}$£¬
ËùÒÔµãP×ø±êÊÇ$£¨\frac{{2\sqrt{5}}}{5}£¬\frac{{\sqrt{5}}}{5}£©$£¬
Ô²ÉϵĵãPµ½Ö±ÏßµÄ×î¶Ì¾àÀëΪ$\frac{{6\sqrt{5}}}{5}-1$£¬×î´ó¾àÀëΪ$\frac{{6\sqrt{5}}}{5}+1$£®
µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊôÓÚÖеµÌ⣮
| A£® | {1£¬2} | B£® | {1}»ò∅ | C£® | $\left\{{1£¬\sqrt{2}£¬2}\right\}$ | D£® | {1} |
| A£® | $£¨-\frac{1}{3}£¬-\frac{1}{4}£©$ºÍ$£¨\frac{1}{2}£¬1£©$ | B£® | $£¨-\frac{1}{2}£¬-\frac{1}{3}£©$ºÍ$£¨\frac{1}{3}£¬\frac{1}{2}£©$ | C£® | $£¨-\frac{1}{2}£¬-\frac{1}{3}£©$ºÍ$£¨\frac{1}{2}£¬1£©$ | D£® | $£¨-\frac{1}{3}£¬-\frac{1}{4}£©$ºÍ$£¨\frac{1}{3}£¬\frac{1}{2}£©$ |
| A£® | 20 | B£® | 36 | C£® | 48 | D£® | 52 |