ÌâÄ¿ÄÚÈÝ
19£®ÎªÁ˼õÉÙÄÜÔ´ËðºÄ£¬Ä³¹¤³§ÐèÒª¸øÉú²ú³µ¼ä½¨Ôì¿ÉʹÓÃ20ÄêµÄ¸ôÈȲ㣮ÒÑÖª½¨Ôì¸Ã¸ôÈȲãÿÀåÃ׺ñµÄ½¨Ôì³É±¾Îª3ÍòÔª£®¸ÃÉú²ú³µ¼äÿÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃM£¨µ¥Î»£ºÍòÔª£©Óë¸ôÈȲãºñ¶Èx£¨µ¥Î»£ºÀåÃ×£©Âú×ã¹ØÏµ£ºM£¨x£©=$\frac{k}{x+2}$£¨0¡Üx¡Ü10£©£¬Èô²»½¨¸ôÈȲ㣬ÿÄêÄÜÔ´ÏûºÄ·ÑÓÃΪ7.5ÍòÔª£¬Éèf£¨x£©Îª¸ôÈȲ㽨Ôì·ÑÓÃÓë20ÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃÖ»ºÍ£®£¨1£©ÇókµÄÖµ¼°f£¨x£©µÄ±í´ïʽ£»
£¨2£©ÊÔÎʵ±¸ôÈȲãÐÞ½¨¶àºñʱ£¬×Ü·ÑÓÃf£¨x£©´ïµ½×îÉÙ£¿²¢Çó³ö×îÉÙ·ÑÓã®
·ÖÎö £¨1£©Óɽ¨ÖþÎïÿÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃM£¨µ¥Î»£ºÍòÔª£©Óë¸ôÈȲãºñ¶Èx£¨µ¥Î»£ºcm£©Âú×ã¹ØÏµ£ºM£¨x£©=$\frac{k}{x+2}$£¨0¡Üx¡Ü10£©£¬Èô²»½¨¸ôÈȲ㣬ÿÄêÄÜÔ´ÏûºÄ·ÑÓÃΪ7.5ÍòÔª£®¿ÉµÃM£¨0£©=7.5£¬µÃk=15£¬½ø¶øµÃµ½M£¨x£©=$\frac{15}{x+2}$£®½¨Ôì·ÑÓÃΪM1£¨x£©=3x£¬Ôò¸ù¾Ý¸ôÈȲ㽨Ôì·ÑÓÃÓë20ÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃÖ®ºÍΪf£¨x£©£¬¼´¿ÉµÃµ½f£¨x£©µÄ±í´ïʽ£»
£¨2£©ÓÉ£¨1£©ÖÐËùÇóµÄf£¨x£©µÄ±í´ïʽ£¬ÀûÓõ¼Êý·¨£¬Çó³öº¯Êýf£¨x£©µÄµ¥µ÷ÐÔ£¬È»ºó¸ù¾Ýº¯Êýµ¥µ÷ÐÔÇó³ö×Ü·ÑÓÃf£¨x£©µÄ×îСֵ£®
½â´ð ½â£º£¨1£©Éè¸ôÈȲãºñ¶ÈΪxcm£¬ÓÉÌâÉ裬ÿÄêÄÜÔ´ÏûºÄ·ÑÓÃΪM£¨x£©=$\frac{k}{x+2}$£¨0¡Üx¡Ü10£©£¬
ÔÙÓÉM£¨0£©=7.5£¬µÃk=15£¬
Òò´ËM£¨x£©=$\frac{15}{x+2}$£®
¶ø½¨Ôì·ÑÓÃΪM1£¨x£©=3x£¬
×îºóµÃ¸ôÈȲ㽨Ôì·ÑÓÃÓë20ÄêµÄÄÜÔ´ÏûºÄ·ÑÓÃÖ®ºÍΪ
f£¨x£©=20M£¨x£©+M1£¨x£©=20¡Á$\frac{15}{x+2}$+3x=$\frac{300}{x+2}$+3x£¨0¡Üx¡Ü10£©£»
£¨2£©f¡ä£¨x£©=3-$\frac{300}{£¨x+2£©^{2}}$£¬Áîf'£¨x£©=0£¬
½âµÃx=8£¬»òx=-12£¨ÉáÈ¥£©£®
µ±0£¼x£¼8ʱ£¬f¡ä£¨x£©£¼0£¬µ±8£¼x£¼10ʱ£¬f¡ä£¨x£©£¾0£¬
¹Êx=8ÊÇf£¨x£©µÄ×îСֵµã£¬¶ÔÓ¦µÄ×îСֵΪf£¨8£©=$\frac{300}{8+2}+3¡Á8=54$£®
¹Êµ±¸ôÈȲãÐÞ½¨8cmºñʱ£¬×Ü·ÑÓôﵽ×îСֵΪ54ÍòÔª£®
µãÆÀ ±¾Ì⿼²éº¯ÊýÄ£Ð͵ÄÑ¡Ôñ¼°Ó¦Ó㬿¼²éÁ˼òµ¥µÄÊýѧ½¨Ä£Ë¼Ïë·½·¨£¬ÑµÁ·ÁËÀûÓõ¼ÊýÇóº¯ÊýµÄ×îÖµ£¬ÊÇÖеµÌ⣮
| A£® | 0£¼x1x2£¼1 | B£® | x1x2=1 | C£® | 1£¼x1x2£¼2 | D£® | x1x2¡Ý2 |
| A£® | $\frac{\sqrt{10}}{10}$ | B£® | $\frac{3\sqrt{10}}{10}$ | C£® | $\frac{\sqrt{10}}{5}$ | D£® | $\frac{\sqrt{15}}{5}$ |
| A£® | 1 | B£® | 2 | C£® | $\frac{2}{3}$ | D£® | $\frac{4}{3}$ |