题目内容
| A、2010 | B、1541 |
| C、134 | D、67 |
考点:程序框图
专题:算法和程序框图
分析:程序的运行功能是求m=2010,n=1541的最大公约数,根据辗转相除法可得m的值.
解答:
解:由程序框图知:程序的运行功能是求m=2010,n=1541的最大公约数,
∵2010=1541+469;
1541=3×469+134;
469=3×134+67;
134=2×67+0;
∴此时m=67.∴输出m的值为67.
故选:D.
∵2010=1541+469;
1541=3×469+134;
469=3×134+67;
134=2×67+0;
∴此时m=67.∴输出m的值为67.
故选:D.
点评:本题考查了辗转相除法的程序框图,掌握辗转相除法的操作流程是关键.
练习册系列答案
相关题目
复数z=
(i是虚数单位)在复平面内的对应点位于( )
| ||
1-
|
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |
定义:如果函数y=f(x)在区间[a,b]上存在x1,x2(a<x1<x2<b),满足f′(x1)=
,f′(x2)=
,则称函数y=f(x)在区间[a,b]上的一个双中值函数,已知函数f(x)=
x3-x2+a是区间[0,a]上的双中值函数,则实数a的取值范围是( )
| f(b)-f(a) |
| b-a |
| f(b)-f(a) |
| b-a |
| 1 |
| 3 |
A、(0,
| ||
B、(
| ||
C、(
| ||
| D、(1,3) |
函数f(x)=2x2-mx+5,当x∈[-1,+∞)时是增函数,当x∈(-∞,-1]时是减函数,则f(-2)等于( )
| A、5 | B、7 |
| C、9 | D、由m的值而定的常数 |
下列函数中,既是偶函数,又在区间(1,2)内是增函数的为( )
| A、y=log2|x| | ||
| B、y=cos2x | ||
C、y=
| ||
D、y=log2
|
阅读如图所示程序框图,运行相应的程序,输出s的值等于( )

| A、-3 | B、-10 | C、0 | D、-2 |