题目内容
数列{an}的前n项的和为Sn,a1=1,an+1=2Sn,数列{bn}中,b1=0,且bn+1-bn=2n,Cn=
.
(1)求数列{an}和{bn}的通项公式;
(2)证明:数列{Cn}的前n的和Sn满足0≤Sn<
.
| bn |
| n•an |
(1)求数列{an}和{bn}的通项公式;
(2)证明:数列{Cn}的前n的和Sn满足0≤Sn<
| 9 |
| 8 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)利用等比数列的定义可知数列{an}是等比数列,即可求得an,由累加法可求得bn;
(2)利用错位相减法求和即可得证.
(2)利用错位相减法求和即可得证.
解答:
解:(1)an+1=2Sn①
n≥2时,an=2sn-1②
①-②得,an+1-an=2an,即
=3,
∴数列{an}是首项为1,公比是3的等比数列,
∴an=3n-1,
∵bn+1-bn=2n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=0+2+4+6+…+2(n-1)=
=n(n-1).
(2)Cn=
=
,
∴sn=
+
+
+…+
,
sn=
+
+…+
+
,
两式作差得
sn=
+
+…+
-
=
-
=
(1-
)-
,
∴sn=
-
.
∴0≤Sn<
.
n≥2时,an=2sn-1②
①-②得,an+1-an=2an,即
| an+1 |
| an |
∴数列{an}是首项为1,公比是3的等比数列,
∴an=3n-1,
∵bn+1-bn=2n,
∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1)=0+2+4+6+…+2(n-1)=
| n(2n-1) |
| 2 |
(2)Cn=
| bn |
| n•an |
| n-1 |
| 3n-1 |
∴sn=
| 0 |
| 30 |
| 1 |
| 31 |
| 2 |
| 32 |
| n-1 |
| 3n-1 |
| 1 |
| 3 |
| 0 |
| 31 |
| 1 |
| 32 |
| n-2 |
| 3n-1 |
| n-1 |
| 3n |
两式作差得
| 2 |
| 3 |
| 1 |
| 31 |
| 1 |
| 32 |
| 1 |
| 3n-1 |
| n-1 |
| 3n |
| ||||
1-
|
| n-1 |
| 3n |
| 1 |
| 2 |
| 1 |
| 3n-1 |
| n-1 |
| 3n |
∴sn=
| 3 |
| 4 |
| 2n+1 |
| 4•3n-1 |
∴0≤Sn<
| 9 |
| 8 |
点评:本题主要考查等比数列的定义、通项公式及前n项和公式,考查错位相减求和及考查学生的运算求解能力,属于中档题.
练习册系列答案
相关题目