题目内容
已知a是方程x2+x-
=0的根,求
的值.
| 1 |
| 4 |
| a3-1 |
| a5+a4-a3-a2 |
考点:根式与分数指数幂的互化及其化简运算
专题:函数的性质及应用
分析:解方程x2+x-
=0求出a,再把求
化简后,把a代入,由此能求出
的值.
| 1 |
| 4 |
| a3-1 |
| a5+a4-a3-a2 |
| a3-1 |
| a5+a4-a3-a2 |
解答:
解:解方程x2+x-
=0,得x=
,
∴a=
,或a=
.
当a=
时,
=
=
=
=
-
=
-
=
+
=12-8
+14+10
=26+2
.
当a=
时,
=
=
-
=
-
=
-
=12+8
+14-10
=26-2
.
| 1 |
| 4 |
-1±
| ||
| 2 |
∴a=
-1-
| ||
| 2 |
-1+
| ||
| 2 |
当a=
-1-
| ||
| 2 |
| a3-1 |
| a5+a4-a3-a2 |
=
| (a-1)(a2+a+1) |
| a3(a2-1)+a2(a2-1) |
=
| a2+a+1 |
| a2(a+1)2 |
=
| (a+1)2-a |
| a2(a+1)2 |
=
| 1 |
| a2 |
| a |
| (a+1)2 |
=
| 1 | ||||
(
|
| ||||
(
|
=
| 4 | ||
3+2
|
2+2
| ||
3-2
|
=12-8
| 2 |
| 2 |
=26+2
| 2 |
当a=
-1+
| ||
| 2 |
| a3-1 |
| a5+a4-a3-a2 |
=
| (a-1)(a2+a+1) |
| a3(a2-1)+a2(a2-1) |
=
| 1 |
| a2 |
| a |
| (a+1)2 |
=
| 1 | ||||
(
|
| ||||
(
|
=
| 4 | ||
3-2
|
-2+2
| ||
3+2
|
=12+8
| 2 |
| 2 |
=26-2
| 2 |
点评:本题考查指数式的化简求值,是基础题,解题时要仔细计算,避免出现计算上的低级错误.
练习册系列答案
相关题目
“a=-1”是“直线a2x-y+1=0与直线x-ay-2=0互相垂直”的( )
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充要条件 |
| D、既不充分也不必要条件 |
已知向量
=(sinα,cos2α),
=(1-2sinα,-1),α∈(
,
),若
•
=-
,则tan(α-
)的值为( )
| a |
| b |
| π |
| 2 |
| 3π |
| 2 |
| a |
| b |
| 8 |
| 5 |
| π |
| 4 |
A、
| ||
B、
| ||
C、-
| ||
D、-
|