题目内容

正方体ABCD-A1B1C1D1中,动点P在底面ABCD内,且P到棱AD的距离与到对角线BC1的距离相等,则点P的轨迹是
 
考点:轨迹方程
专题:综合题
分析:作PM⊥AD、PE⊥BC、EF⊥BC1,连接PF,由线面垂直的判定定理、定义可得:PF是P到BC1的距离,以D为原点,AD所在直线为x轴,DC所在直线为y轴建立直角坐标系,利用条件建立方程,化简后判断出点P的轨迹.
解答: 解:假设正方体边长为1,
作PM⊥AD、PE⊥BC、EF⊥BC1,连接PF,
因为PE⊥CC1,BC∩CC1=C,所以PE⊥平面BCB1C1
则PE⊥BC1,又EF⊥BC1,PE∩EF=E,
所以BC1⊥平面PEF,则BC1⊥PF,
所以PF是P到对角线BC1的距离,
以D为原点,AD所在直线为x轴,DC所在直线为y轴建立直角坐标系;
设任意一点P(x,y),到直线AD距离为|y|,到BC的距离PE=1-y,
在RT△BEF中,BE=1-x,EF=
2
2
(1-x)

在RT△PEF中,PF=
|PE|2+|EF|2
=
(1-y)2+[
2
2
(1-x)]
2

因为P到棱AD的距离与到对角线BC1的距离相等,
所以|y|=
(1-y)2+[
2
2
(1-x)]
2

化简得,(x-1)2=-4y+2(y
1
2
),
所以点P的轨迹是抛物线,
故答案为:抛物线.
点评:本题考查轨迹方程以及轨迹,线面垂直的判定定理、定义,考查学生分析解决问题的能力,确定轨迹方程是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网