ÌâÄ¿ÄÚÈÝ
4£®ÒÑÖªai£¾0£¨i=1£¬2£¬3£¬¡£¬n£©£¬¹Û²ìÏÂÁв»µÈʽ£º$\frac{{{a_1}+{a_2}}}{2}¡Ý\sqrt{{a_1}{a_2}}$£»$\frac{{{a_1}+{a_2}+{a_3}}}{3}¡Ý\root{3}{{{a_1}{a_2}{a_3}}}$£»$\frac{{{a_1}+{a_2}+{a_3}+{a_4}}}{4}¡Ý\root{4}{{{a_1}{a_2}{a_3}{a_4}}}$£»¡
Õմ˹æÂÉ£¬µ±n¡ÊN*£¨n¡Ý2£©Ê±£¬$\frac{{{a_1}+{a_2}+¡+{a_n}}}{n}¡Ý$$\root{n}{{{a_1}{a_2}¡{a_n}}}$£®
·ÖÎö ÓÉÌâÒ⣬֪×ó±ßÿһ¸öʽ×ÓÊÇËãÊõƽ¾ùÊý£¬ÓұߵÄʽ×ÓÊǼ¸ºÎƽ¾ùÊý£¬¼´¼¸¸öÊýËãÊõƽ¾ùÊý²»Ð¡ÓÚËüÃǵļ¸ºÎƽ¾ùÊý£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉÌâÒ⣬֪×ó±ßÿһ¸öʽ×ÓÊÇËãÊõƽ¾ùÊý£¬ÓұߵÄʽ×ÓÊǼ¸ºÎƽ¾ùÊý£¬¼´¼¸¸öÊýËãÊõƽ¾ùÊý²»Ð¡ÓÚËüÃǵļ¸ºÎƽ¾ùÊý£®
¹éÄÉÍÆ²âµ±n¡ÊN*£¨n¡Ý2£©Ê±£¬$\frac{{{a_1}+{a_2}+¡+{a_n}}}{n}¡Ý$$\root{n}{{{a_1}{a_2}¡{a_n}}}$£®
¹Ê´ð°¸Îª£º$\root{n}{{{a_1}{a_2}¡{a_n}}}$£®
µãÆÀ ±¾Ì⿼²é¹éÄÉÍÆÀí£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬±È½Ï»ù´¡£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®
ÈçͼËùʾ£¬Ãæ»ýΪSµÄÆ½ÃæÍ¹ËıßÐεĵÚiÌõ±ßµÄ±ß³¤Îªai£¨i=1£¬2£¬3£¬4£©£¬´ËËıßÐÎÄÚÔÚÒ»µãPµ½µÚiÌõ±ßµÄ¾àÀë¼ÇΪhi£¨i=1£¬2£¬3£¬4£©£¬Èô$\frac{a_1}{1}=\frac{a_2}{3}=\frac{a_3}{5}=\frac{a_4}{7}$=k£¬Ôòh1+3h2+5h3+7h4=$\frac{2S}{k}$£®Àà±ÈÒÔÉÏÐÔÖÊ£¬Ìå»ýΪVµÄÈýÀâ×¶µÄµÚi¸öÃæµÄÃæ»ý¼ÇΪSi£¨i=1£¬2£¬3£¬4£©£¬´ËÈýÀâ×¶ÄÚÈÎÒ»µãQµ½µÚi¸öÃæµÄ¾àÀë¼ÇΪHi£¨i=1£¬2£¬3£¬4£©£¬Èô$\frac{S_1}{1}=\frac{S_2}{3}=\frac{S_3}{5}=\frac{S_4}{7}$=K£¬H1+3H2+5H3+7H4=£¨¡¡¡¡£©
| A£® | $\frac{V}{2K}$ | B£® | $\frac{2V}{K}$ | C£® | $\frac{3V}{K}$ | D£® | $\frac{V}{3K}$ |
9£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{kx+3£¬x¡Ý0}\\{£¨\frac{1}{2}£©^{x}£¬x£¼0}\end{array}\right.$£¬Èô·½³Ìf£¨f£¨x£©£©-2=0Ç¡ÓÐÈý¸öʵÊý¸ù£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | [0£¬+¡Þ£© | B£® | [1£¬3] | C£® | £¨-1£¬-$\frac{1}{3}$] | D£® | [-1£¬-$\frac{1}{3}$] |