ÌâÄ¿ÄÚÈÝ
5£®£¨1£©¸ù¾ÝÌõ¼þÍê³ÉÏÂÁÐ2¡Á2ÁÐÁª±í£¬²¢ÅжÏÊÇ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý1%µÄÇé¿öÏÂÔ¸Òâ½ÓÊÜÌôÕ½ÓëÐÔ±ðÓйأ¿
| Ô¸Òâ | ²»Ô¸Òâ | ×Ü¼Æ | |
| ÄÐÉú | |||
| Å®Éú | |||
| ×Ü¼Æ |
²Î¿¼¹«Ê½ÓëÊý¾Ý£º
| P£¨K2¡Ýk0£© | 0.1 | 0.05 | 0.025 | 0.01 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
·ÖÎö £¨1£©ÀûÓÃk2¼ÆË㹫ʽ¼´¿ÉµÃ³ö£®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºX=0£¬1£¬2£®Í¨¹ý·ÖÀàÌÖÂÛ£¬ÀûÓÃÏ໥¶ÀÁ¢Ó뻥³âʼþ¸ÅÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓÉͳ¼Æ±í¸ñ¿ÉµÃ£º
| Ô¸Òâ | ²»Ô¸Òâ | ×Ü¼Æ | |
| ÄÐÉú | 15 | 45 | 60 |
| Å®Éú | 20 | 20 | 40 |
| ×Ü¼Æ | 35 | 65 | 100 |
ÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý1%µÄÇé¿öÏÂÄܽÓÊÜÌôÕ½ÓëÐÔ±ðÓйأ®
£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºX=0£¬1£¬2£®
ÔòP£¨X=0£©=$£¨1-\frac{1}{2}£©¡Á\frac{1}{2}$=$\frac{1}{4}$£¬P£¨X=1£©=$£¨{∁}_{2}^{1}¡Á\frac{1}{2}¡Á\frac{1}{2}+\frac{1}{2}¡Á\frac{1}{2}£©$¡Á$\frac{1}{2}$¡Á$\frac{1}{2}$=$\frac{3}{16}$£¬
P£¨X=2£©=$£¨{∁}_{2}^{1}¡Á\frac{1}{2}¡Á\frac{1}{2}+\frac{1}{2}¡Á\frac{1}{2}£©$$£¨{∁}_{2}^{1}¡Á\frac{1}{2}¡Á\frac{1}{2}+\frac{1}{2}¡Á\frac{1}{2}£©$=$\frac{9}{16}$£®
| X | 0 | 1 | 2 |
| P | $\frac{1}{4}$ | $\frac{3}{16}$ | $\frac{9}{16}$ |
µãÆÀ ±¾Ì⿼²éÁËËæ»ú±äÁ¿µÄ·Ö²¼ÁеÄÐÔÖʼ°ÆäÊýѧÆÚÍû¡¢¡°¶ÀÁ¢ÐÔ¼ìÑ顱¼ÆË㹫ʽ¼°ÆäÔÀí£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®
ijһ¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ×ÀⳤΪ£¨¡¡¡¡£©
| A£® | 2 | B£® | $\sqrt{5}$ | C£® | 2$\sqrt{2}$ | D£® | 3 |
17£®ÈçͼΪij¼¸ºÎÌåµÄÈýÊÓͼ£¬ÔòÆäÌå»ýΪ£¨¡¡¡¡£©

| A£® | ¦Ð+$\frac{4}{3}$ | B£® | $\frac{¦Ð}{3}$+4 | C£® | $\frac{2}{3}$¦Ð+$\frac{4}{3}$ | D£® | $\frac{2}{3}$¦Ð+4 |
15£®¹ýË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó½¹µãF£¬×÷Ô²x2+y2=$\frac{{a}^{2}}{4}$µÄÒ»ÌõÇÐÏߣ¬ÇеãΪE£¬ÑÓ³¤FEÓëË«ÇúÏßµÄÓÒÖ§½»ÓÚµãP£¬ÈôEÊÇÏß¶ÎFPµÄÖе㣬Ôò¸ÃË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{\sqrt{10}}{2}$ | B£® | $\frac{\sqrt{10}}{5}$ | C£® | $\sqrt{10}$ | D£® | $\sqrt{2}$ |