题目内容

17.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,点P(1,$\frac{\sqrt{3}}{2}$)在椭圆E上.
(1)求椭圆E的方程;
(2)过点P且斜率为k的直线l交椭圆E于点Q(xQ,yQ)(点Q异于点P),若0<xQ<1,求直线l斜率k的取值范围;
(3)若以点P为圆心作n个圆Pi(i=1,2,…,n),设圆Pi交x轴于点Ai、Bi,且直线PAi、PBi分别与椭圆E交于Mi、Ni(Mi、Ni皆异于点P),证明:M1N1∥M2N2∥…∥MnNn

分析 (1)根据椭圆的离心率求得a2=4b2,将P代入椭圆方程,即可求得a和b的值,求得椭圆方程;
(2)设直线l的方程,代入椭圆方程,利用韦达定理,求得xQ,由0<xQ<1,即可求得k的取值范围;
(3)由题意可知:故直线PAi,PBi的斜率互为相反数,分别设直线方程,代入椭圆方程,即可求得xi,xi′,根据直线的斜率公式,即可求得$\frac{{y}_{i}-{y}_{i}′}{{x}_{i}-{x}_{i}′}$=$\frac{\sqrt{3}}{6}$,${k}_{{M}_{1}{N}_{1}}$=${k}_{{M}_{2}{N}_{2}}$=…=${k}_{{M}_{n}{N}_{n}}$,则M1N1∥M2N2∥…∥MnNn

解答 解:(1)由椭圆的离心率e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{3}}{2}$,则a2=4b2
将P(1,$\frac{\sqrt{3}}{2}$)代入椭圆方程:$\frac{1}{4{b}^{2}}+\frac{3}{4{b}^{2}}=1$,解得:b2=1,则a2=4,
∴椭圆的标准方程:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)设直线l的方程y-$\frac{\sqrt{3}}{2}$=k(x-1),
则$\left\{\begin{array}{l}{y-\frac{\sqrt{3}}{2}=k(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,整理得:(1+4k2)x2+(4$\sqrt{3}$k-8k2)x+(4k2-4$\sqrt{3}$k-1)=0,
由x0•1=$\frac{4{k}^{2}-4\sqrt{3}k-1}{1+4{k}^{2}}$,由0<x0<1,则0<$\frac{4{k}^{2}-4\sqrt{3}k-1}{1+4{k}^{2}}$<1,
解得:-$\frac{\sqrt{3}}{6}$<k<$\frac{\sqrt{3}-2}{2}$,或k>$\frac{\sqrt{3}+2}{2}$,经验证,满足题意,
直线l斜率k的取值范围(-$\frac{\sqrt{3}}{6}$,$\frac{\sqrt{3}-2}{2}$)∪($\frac{\sqrt{3}+2}{2}$,+∞);
(3)动圆P的半径为PAi,PBi,故PAi=PBi,△PAiBi为等腰三角形,故直线PAi,PBi的斜率互为相反数,设PAi的斜率ki,则直线PBi的斜率为-ki
设直线PAi的方程:y-$\frac{\sqrt{3}}{2}$=ki(x-1),则直线PBi的方程:y-$\frac{\sqrt{3}}{2}$=-ki(x-1),
$\left\{\begin{array}{l}{y-\frac{\sqrt{3}}{2}={k}_{i}(x-1)}\\{\frac{{x}^{2}}{4}+{y}^{2}=1}\end{array}\right.$,消去y,整理得:(1+4ki2)x2+(4$\sqrt{3}$ki-8ki2)x+(4ki2-4$\sqrt{3}$ki-1)=0,设Mi(xi,yi),Ni(xi′,yi′),
则xi•1=$\frac{4{k}_{i}^{2}-4\sqrt{3}{k}_{i}-1}{1+4{k}_{i}^{2}}$,则xi=$\frac{4{k}_{i}^{2}-4\sqrt{3}{k}_{i}-1}{1+4{k}_{i}^{2}}$,
将-ki代替ki,则xi′=$\frac{4{k}_{i}^{2}+4\sqrt{3}{k}_{i}-1}{1+4{k}_{i}^{2}}$,
则xi+xi′=$\frac{8{k}_{i}^{2}-2}{1+4{k}_{i}^{2}}$,xi-xi′=-$\frac{8\sqrt{3}{k}_{i}}{1+4{k}_{i}^{2}}$,yi-yi′=ki(xi-1)+$\frac{\sqrt{3}}{2}$+ki(xi-1)-$\frac{\sqrt{3}}{2}$=ki(xi+xi′)-2ki
=ki×$\frac{8{k}_{i}^{2}-2}{1+4{k}_{i}^{2}}$-2ki
=$\frac{-4{k}_{i}}{1+4{k}_{i}^{2}}$,
则$\frac{{y}_{i}-{y}_{i}′}{{x}_{i}-{x}_{i}′}$=$\frac{\frac{-4{k}_{i}}{1+4{k}_{i}^{2}}}{\frac{-8\sqrt{3}{k}_{i}}{1+4{k}_{i}^{2}}}$=$\frac{\sqrt{3}}{6}$,
故${k}_{{M}_{1}{N}_{1}}$=${k}_{{M}_{2}{N}_{2}}$=…=${k}_{{M}_{n}{N}_{n}}$,
∴M1N1∥M2N2∥…∥MnNn

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,直线的斜率公式,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网