题目内容

2.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:
分数区间甲班频率乙班频率
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.3
[90,120)0.20.2
[120,150)0.20.1
(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成下面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?
 优秀不优秀总计
甲班   
乙班   
总计   
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

分析 (I)计算乙班参加测试的90(分)以上的同学人数,以及120分以人数,利用列举法求出对应事件数,求出对应的概率值;
(II)计算甲、乙两班优秀与不优秀的人数,填写列联表,计算K2,对照数表得出概率结论.

解答 解:(I)乙班参加测试的90(分)以上的同学有20×(0.2+0.1)=6人,记为A、B、C、D、E、F;
其中成绩优秀120分以上有20×0.1=2人,记为A、B;
从这6名学生随机抽取两名的基本事件有:
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},
{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个…(3分)
设事件G表示恰有一位学生成绩优秀,符合要求的事件有{A,C},{A,D},
{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个;…(5分)
所以$P(G)=\frac{8}{15}$;…(6分)
(II)计算甲班优秀的人数为20×0.2=4,不优秀的人数为16,乙班优秀人数为2,不优秀的人数为18,
填写列联表,如下;

优秀不优秀总计
甲班41620
乙班21820
总计63440
…(8分)
计算K2=$\frac{40{×(4×18-2×16)}^{2}}{6×34×20×20}$≈0.7843<2.706;…(10分)
所以在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.…(12分)

点评 本题考查了用列举法求古典概型的概率问题,也考查了独立性检验的应用问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网