题目内容
2.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:| 分数区间 | 甲班频率 | 乙班频率 |
| [0,30) | 0.1 | 0.2 |
| [30,60) | 0.2 | 0.2 |
| [60,90) | 0.3 | 0.3 |
| [90,120) | 0.2 | 0.2 |
| [120,150) | 0.2 | 0.1 |
(Ⅱ)根据以上数据完成下面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关系?
| 优秀 | 不优秀 | 总计 | |
| 甲班 | |||
| 乙班 | |||
| 总计 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
分析 (I)计算乙班参加测试的90(分)以上的同学人数,以及120分以人数,利用列举法求出对应事件数,求出对应的概率值;
(II)计算甲、乙两班优秀与不优秀的人数,填写列联表,计算K2,对照数表得出概率结论.
解答 解:(I)乙班参加测试的90(分)以上的同学有20×(0.2+0.1)=6人,记为A、B、C、D、E、F;
其中成绩优秀120分以上有20×0.1=2人,记为A、B;
从这6名学生随机抽取两名的基本事件有:
{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},
{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个…(3分)
设事件G表示恰有一位学生成绩优秀,符合要求的事件有{A,C},{A,D},
{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共8个;…(5分)
所以$P(G)=\frac{8}{15}$;…(6分)
(II)计算甲班优秀的人数为20×0.2=4,不优秀的人数为16,乙班优秀人数为2,不优秀的人数为18,
填写列联表,如下;
| 优秀 | 不优秀 | 总计 | |
| 甲班 | 4 | 16 | 20 |
| 乙班 | 2 | 18 | 20 |
| 总计 | 6 | 34 | 40 |
计算K2=$\frac{40{×(4×18-2×16)}^{2}}{6×34×20×20}$≈0.7843<2.706;…(10分)
所以在犯错概率小于0.1的前提下,没有足够的把握说明学生的数学成绩是否优秀与班级有关系.…(12分)
点评 本题考查了用列举法求古典概型的概率问题,也考查了独立性检验的应用问题,是基础题目.
练习册系列答案
相关题目
12.Sn为等比数列{an}的前n项和,满足al=l,Sn+2=4Sn+3,则{an}的公比为( )
| A. | -3 | B. | 2 | C. | 2或-3 | D. | 2或-2 |
13.
某校在一次高三年级“诊断性”测试后,对该年级的500名考生的成绩进行统计分析,成绩的频率分布表及频率分布直方图如图所示,规定成绩不小于125分为优秀.
(1)若用分层抽样的方法从这500人中抽取4人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的4名学生中,随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
(1)若用分层抽样的方法从这500人中抽取4人的成绩进行分析,求其中成绩为优秀的学生人数;
(2)在(1)中抽取的4名学生中,随机抽取2名学生参加分析座谈会,求恰有1人成绩为优秀的概率.
| 区间 | 人数 |
| [115,120) | 25 |
| [120,125) | a |
| [125,130) | 175 |
| [130,135) | 150 |
| [135,140) | b |
7.已知某水库近50年来年入流量X(单位:亿立方米)的频数分布如表:
将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.现计划在该水库建一座至多安装3台发电机组的水电站,已知每年发电机组最多可运行台数Y受当年年入流量X的限制,并有如下关系:
(1)求随机变量Y的数学期望;
(2)若某台发电机组正常运行,则该台发电机组年利润为5000万元;若某台发电机组未运行,则该台发电机组年亏损800万元.为使水电站年总利润的期望达到最大,应安装发电机组多少台?
| 年入流量 | 40<X<80 | 80≤X≤120 | X>120 |
| 年数 | 10 | 35 | 5 |
| 年入流量 | 40<X<80 | 80≤X≤120 | X>120 |
| 最多运行台数 | 1 | 2 | 3 |
(2)若某台发电机组正常运行,则该台发电机组年利润为5000万元;若某台发电机组未运行,则该台发电机组年亏损800万元.为使水电站年总利润的期望达到最大,应安装发电机组多少台?
14.若集合P={x||x|<3,且x∈Z},Q={x|x(x-3)≤0,且x∈N},则P∩Q等于( )
| A. | {0,1,2} | B. | {1,2,3} | C. | {1,2} | D. | {0,1,2,3} |