题目内容
若等边△ABC的边长为2,平面内一点M满足
=
+
,则
•
= .
| CM |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| MA |
| MB |
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由等边△ABC的边长为2,可得
•
=2×2×cos60°.由
=
+
,可得
-
=
+
,
-
=
+
,进而得到
=-
+
,
=
-
.即可得出
•
=(
-
)•(
-
).
| CA |
| CB |
| CM |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| AM |
| AC |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| BM |
| BC |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| MA |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| MB |
| 2 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| MA |
| MB |
| 1 |
| 2 |
| CA |
| 1 |
| 3 |
| CB |
| 2 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
解答:
解:∵等边△ABC的边长为2,∴CA=CB=2,
•
=2×2×cos60°=2.
∵
=
+
,∴
-
=
+
,
-
=
+
,
∴
=-
+
,
=
-
.
∴
•
=(
-
)•(
-
)=
•
-
2-
2
=
×2-
×22-
×22
=-
.
故答案为:-
.
| CA |
| CB |
∵
| CM |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| AM |
| AC |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| BM |
| BC |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
∴
| MA |
| 1 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| MB |
| 2 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
∴
| MA |
| MB |
| 1 |
| 2 |
| CA |
| 1 |
| 3 |
| CB |
| 2 |
| 3 |
| CB |
| 1 |
| 2 |
| CA |
| 1 |
| 2 |
| CA |
| CB |
| 1 |
| 4 |
| CA |
| 2 |
| 9 |
| CB |
=
| 1 |
| 2 |
| 1 |
| 4 |
| 2 |
| 9 |
=-
| 8 |
| 9 |
故答案为:-
| 8 |
| 9 |
点评:本题考查了数量积的运算及其性质,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目