题目内容
15.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$目标函数z=x+2y的最大值是( )| A. | 4 | B. | 2 | C. | $\frac{8}{3}$ | D. | $\frac{16}{3}$ |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x+y≤2}\\{2x+y≥2}\\{x-y≤2}\end{array}\right.$作出可行域如图:![]()
化目标函数z=x+2y为$y=-\frac{x}{2}+\frac{z}{2}$,
由图可知,当直线$y=-\frac{x}{2}+\frac{z}{2}$过点A时,直线在y轴上的截距最大,
z有最大值为4.
故选:A.
点评 本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
5.若f(x)=2cos(ωx+φ)+m(ω>0)对任意实数t都有f(t+$\frac{π}{4}$)=f(-t),且f($\frac{π}{8}$)=-1,则实数m的值等于( )
| A. | -3或1 | B. | -1或3 | C. | ±3 | D. | ±1 |
6.若x∈(0,$\frac{π}{2}$),则( )
| A. | x2cos2x>1 | B. | $\frac{{x}^{4}}{si{n}^{2}x}$>$\frac{3}{4}$ | C. | x2+cos2x>1 | D. | x4-sin2x>$\frac{3}{4}$ |
10.已知f(x)=x3-2xf′(1)+1,则f′(0)的值为( )
| A. | 2 | B. | -2 | C. | 1 | D. | -1 |
4.已知集合A={x∈R|2x-3≥0},集合B={x∈R|(x-2)(x-1)<0},则A∩B=( )
| A. | {x|x≥$\frac{3}{2}$} | B. | {x|$\frac{3}{2}$≤x<2} | C. | {x|1<x<2} | D. | {x|$\frac{3}{2}$<x<2} |
5.设复数z的共轭复数为$\overline z$,$\overline z=\frac{2+4i}{z}+z$,则在复平面内复数z对应的点位于( )
| A. | 第三象限 | B. | 第二或第四象限 | C. | 第四象限 | D. | 第三或第四象限 |