题目内容
将一张坐标纸折叠一次,使点(10,0)与点(-6,8)重合,则与点(-4,2)重合的点是 .
考点:直线的一般式方程与直线的垂直关系
专题:直线与圆
分析:利用线段的垂直平分线的性质可得线段AB的垂直平分线即可得出.
解答:
解:已知点A(10,0),点B(-6,8),可得中点M(2,4).
则kAB=
=-
.
∴线段AB的垂直平分线为:y-4=2(x-2),
化为2x-y=0.
设点(-4,2)关于直线2x-y=0的对称点为P(a,b),
则
,解得
.
∴与点(-4,2)重合的点是(4,-2).
故答案为:(4,-2).
则kAB=
| 8 |
| -6-10 |
| 1 |
| 2 |
∴线段AB的垂直平分线为:y-4=2(x-2),
化为2x-y=0.
设点(-4,2)关于直线2x-y=0的对称点为P(a,b),
则
|
|
∴与点(-4,2)重合的点是(4,-2).
故答案为:(4,-2).
点评:本题考查了线段的垂直平分线的性质,属于基础题.
练习册系列答案
相关题目
下列求导过程中(1)(
)′=-
(2)(
)′=
(3)(logax)′=(
)′=
(4)(ax)′=(exlna)′=exlnalna=axlna,其中正确的个数是( )
| 1 |
| x |
| 1 |
| x2 |
| x |
| 1 | ||
2
|
| lnx |
| lna |
| 1 |
| xlna |
| A、1 | B、2 | C、3 | D、4 |
已知sin(
-x)=
则cos(x+
)等于( )
| π |
| 3 |
| 3 |
| 5 |
| π |
| 6 |
A、-
| ||
B、-
| ||
C、
| ||
D、
|