题目内容
2.已知变量x,y,满足:$\left\{\begin{array}{l}{2x-y≤0}\\{x-2y+3≥0}\\{x≥0}\end{array}\right.$,则z=2x+y的最大值为4.分析 作出可行域,根据可行域移动目标函数,根据直线的截距得出最优解.
解答 解:作出约束条件表示的可行域如图:![]()
由z=2x+y得y=-2x+z.
由图形可知当直线y=-2x+z经过B点时,直线的截距最大,即z最大.
解方程组$\left\{\begin{array}{l}{2x-y=0}\\{x-2y+3=0}\end{array}\right.$,得B(1,2).
∴z的最大值为z=2×1+2=4.
故答案为:4.
点评 本题考查了简单的线性规划,属于中档题.
练习册系列答案
相关题目
12.
甲、乙两名篮球运动员在7场比赛中的得分情况如茎叶所示,$\overline x$甲、$\overline x$乙分别表示甲、乙两人的平均得分,则下列判断正确的是( )
| A. | $\overline x$甲>$\overline x$乙,甲比乙得分稳定 | B. | $\overline x$甲>$\overline x$乙,乙比甲得分稳定 | ||
| C. | $\overline x$甲<$\overline x$乙,甲比乙得分稳定 | D. | $\overline x$甲<$\overline x$乙,乙比甲得分稳定 |
13.使f(x)=sin(2x+θ)-$\sqrt{3}$cos(2x+θ)为奇函数,且在[0,$\frac{π}{4}$]上是减函数的θ的一个值是( )
| A. | $\frac{4π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | -$\frac{π}{3}$ |
7.已知向量法$\overrightarrow{{l}_{1}}$≠$\overrightarrow{0}$,λ∈R,$\overrightarrow{a}$=$\overrightarrow{{l}_{1}}$+λ$\overrightarrow{{l}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{l}_{2}}$,若向量$\overrightarrow{a}$和$\overrightarrow{b}$共线,则下列关系一定成立的是( )
| A. | λ=0 | B. | $\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$ | C. | $\overrightarrow{{l}_{1}}$∥$\overrightarrow{{l}_{2}}$ | D. | $\overrightarrow{{l}_{2}}$=$\overrightarrow{0}$或λ=0 |
11.A,B,C是△ABC的三个内角,若$\overrightarrow{m}$=(sin2$\frac{B+C}{2}$,1),$\overrightarrow{n}$=(-2,cos2A+1),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,则cosA=( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$或1 | D. | $\frac{1}{2}$或0 |
6.小明、小王、小张、小李4名同学排成一纵队表演节目,其中小明不站排头,小张不站排尾,则不同的排法共有( )种.
| A. | 14 | B. | 18 | C. | 12 | D. | 16 |