题目内容

14.O为△ABC的外心,|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,∠BAC为钝角,M在BC上,且$\overrightarrow{BM}$=2$\overrightarrow{MC}$,则$\overrightarrow{AM}$$•\overrightarrow{AO}$的值是(  )
A.4B.$\frac{14}{3}$C.$\frac{16}{3}$D.6

分析 过点O分别作OE⊥AB于E,OF⊥AC于F,可得E、F分别是AB、AC的中点.根据数量积的定义可求得$\overrightarrow{AB}•\overrightarrow{AO}$,$\overrightarrow{AC}•\overrightarrow{AO}$,用$\overrightarrow{AB},\overrightarrow{AC}$表示出$\overrightarrow{AM}$即可求得$\overrightarrow{AM}$$•\overrightarrow{AO}$的值.

解答 解:过点O分别作OE⊥AB于E,OF⊥AC于F,则E、F分别是AB、AC的中点.
∴$\overrightarrow{AB}•\overrightarrow{AO}$=AB•AO•cos∠OAB=AB•AE=4×2=8,
$\overrightarrow{AC}•\overrightarrow{AO}$=AC•AO•cos∠OAC=AC•AF=2×1=2.
∵$\overrightarrow{BM}$=2$\overrightarrow{MC}$,∴$\overrightarrow{BM}=\frac{2}{3}\overrightarrow{BC}$=$\frac{2}{3}$$\overrightarrow{AC}$-$\frac{2}{3}\overrightarrow{AB}$.
∴$\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}$=$\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$.
∴$\overrightarrow{AM}$$•\overrightarrow{AO}$=($\frac{1}{3}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AC}$)$•\overrightarrow{AO}$=$\frac{1}{3}$$\overrightarrow{AB}•\overrightarrow{AO}$+$\frac{2}{3}$$\overrightarrow{AC}•\overrightarrow{AO}$=$\frac{8}{3}$+$\frac{4}{3}$=4.
故选:A.

点评 本题将△ABC放在它的外接圆O中,着重考查了平面向量的数量积的运算性质和三角形外接圆等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网