题目内容
6.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题错误的是( )| A. | 若α,β垂直于同一平面,则α与β可能相交 | |
| B. | 若m,n平行于同一平面,则m与n可能异面 | |
| C. | 若m,n不平行,则m与n不可能垂直于同一平面 | |
| D. | 若α,β不平行,则在α内不存在与β平行的直线 |
分析 利用线面、面面位置关系,即可判断.
解答 解:对于A,若α,β垂直于同一平面,则α与β平行或相交,正确;
对于B,若m,n平行于同一平面,则m与n异面、平行或相交,正确;
对于C,根据垂直于同一平面的两条直线平行,可知正确;
对于D,α,β相交时,在α内存在与β平行的直线,不正确.
故选D.
点评 本题考查线面、面面位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
19.已知b-2n=π3m(b>0,m,n∈N+),则b=( )
| A. | π${\;}^{\frac{3m}{2n}}$(m,n∈N+) | B. | π${\;}^{-\frac{3m}{2n}}$(m,n∈N+) | C. | π${\;}^{\frac{2n}{3m}}$(m,n∈N+) | D. | π${\;}^{-\frac{2n}{3m}}$(m,n∈N+) |
14.已知复数z满足(1+3i)z=10,则z=( )
| A. | -1-3i | B. | 1+3i | C. | -1+3i | D. | 1-3i |
11.已知奇函数y=f(x)满足:f(x)=f(x+2),且当x∈(0,1)时,f(x)=2x-1,则f(-4.5)=( )
| A. | -2 | B. | -1 | C. | $-\frac{1}{2}$ | D. | 0 |
16.已知x=log23-log2$\sqrt{3}$,y=log0.53,z=0.9-1.1,则( )
| A. | x<y<z | B. | z<y<x | C. | y<z<x | D. | y<x<z |