题目内容
已知P是△ABC内部一点,
+
+
=
,记△PBC、△PAC、△PAB的面积分别为S1、S2、S3,则S1:S2:S3= .
| PA |
| 2PB |
| 3PC |
| 0 |
考点:棱柱、棱锥、棱台的体积
专题:计算题,空间位置关系与距离
分析:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',则
+
+
=
,再利用比例关系确定S1:S2:S3.
| PA |
| PB′ |
| PC′ |
| 0 |
解答:
解:如图:延长PB到B',使PB'=2PB,延长PC到C',使PC=3PC',则
+
+
=
,
∴P是△AB'C'的重心,
∴S△PAB'=S△PAC'=S△PB'C'=k
∴S1=
PB•PCsin∠BPC
=
•
PB'•
PC'sin∠BPC
=
S△PB'C'=
k
S3=
S△PAB'=
k,
S2=
S△PAC'=
k
故S1:S2:S3=1:2:3.
故答案为:1:2:3.
| PA |
| PB′ |
| PC′ |
| 0 |
∴P是△AB'C'的重心,
∴S△PAB'=S△PAC'=S△PB'C'=k
∴S1=
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
=
| 1 |
| 6 |
| 1 |
| 6 |
S3=
| 1 |
| 2 |
| 1 |
| 2 |
S2=
| 1 |
| 3 |
| 1 |
| 3 |
故S1:S2:S3=1:2:3.
故答案为:1:2:3.
点评:本题考查了向量的三角形法则、共线定理、相似三角形的性质,属于难题.
练习册系列答案
相关题目