题目内容
16.抛物线y=x2上到直线2x-y-4=0距离最近的点的坐标是( )| A. | (1,1) | B. | $({\frac{1}{2},\frac{1}{4}})$ | C. | $({\frac{1}{3},\frac{1}{9}})$ | D. | (2,4) |
分析 设出P的坐标,进而根据点到直线的距离公式求得P到直线的距离的表达式,根据x的范围求得距离的最小值.
解答 解:设P(x,y)为抛物线y=x2上任一点,
则P到直线的距离d=$\frac{|2x-y-4|}{\sqrt{5}}$=$\frac{|2x-{x}^{2}-4|}{\sqrt{5}}$=$\frac{{x}^{2}-2x+4}{\sqrt{5}}$=$\frac{(x-1)^{2}+3}{\sqrt{5}}$,
∴x=1时,d取最小值$\frac{3\sqrt{5}}{5}$
此时P(1,1).
故选:A.
点评 本题主要考查了抛物线的简单性质,点到直线的距离公式.考查了学生数形结合的数学思想和基本的运算能力.
练习册系列答案
相关题目
7.设θ为第二象限的角,cos($\frac{π}{2}$-θ)=$\frac{3}{5}$,则sin2θ=( )
| A. | $\frac{7}{25}$ | B. | $\frac{24}{25}$ | C. | -$\frac{7}{25}$ | D. | -$\frac{24}{25}$ |
4.有矩形铁板,其长为6,宽为4,需从四个角上剪掉边长为 x 的四个小正方形,将剩余部分折成一个无盖的长方体盒子,要使容积最大,则 x 等于( )
| A. | $\frac{5-\sqrt{7}}{3}$ | B. | $\frac{5+\sqrt{7}}{3}$ | C. | $\frac{7-\sqrt{5}}{3}$ | D. | $\frac{7+\sqrt{5}}{3}$ |
11.“a2>1”是“a3>1”的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
8.“a>b”是“ac2>bc2”的( )
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
5.已知$tanα=\frac{1}{2}$,则cos2α=( )
| A. | $\frac{2}{5}$ | B. | $\frac{3}{5}$ | C. | $±\frac{2}{5}$ | D. | $±\frac{3}{5}$ |