题目内容
18.设角x的终边不在坐标轴上,求函数y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域.分析 本题需要对于角所在的象限讨论,确定符号,对于四个象限,因为三角函数值的符号不同,需要按照四种不同的情况进行讨论,得到结果.
解答 解:由题意知本题需要对于角所在的象限讨论,确定符号,
当角x在第一象限时,y=1+1+1=3,
当角在第二象限时,y=1-1-1=-1,
当角在第三象限时,y=-1-1+1=-1,
当角在第四象限时,y=-1+1-1=-1.
故函数y=$\frac{sinx}{|sinx|}$+$\frac{cosx}{|cosx|}$+$\frac{tanx}{|tanx|}$的值域为{-1,3}
点评 本题考查三角函数值的符号,考查函数的值域,本题是一个比较简单的综合题目,这种题目若出现是一个送分题目.
练习册系列答案
相关题目
10.不等式x+y>2所表示的平面区域是( )
| A. | B. | C. | D. |
11.下列函数为偶函数的是( )
| A. | f(x)=x | B. | f(x)=x2 | C. | f(x)=$\frac{1}{x}$ | D. | f(x)=x2-2x+1 |