题目内容
曲线y=2x2在点P(2,8)处的切线方程为( )
| A、8x+y-8=0 |
| B、8x-y-8=0 |
| C、x+8y-8=0 |
| D、x-y+8=0 |
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:求出函数的导数,利用导数的几何意义求切线斜率,进而求切线方程即可.
解答:
解:函数的导数为f′(x)=4x,
所以函数在点(2,8)处的切线斜率k=f′(2)=8,
所以y=2x2在点(2,8)处的切线方程为y-8=8(x-2),
即8x-y-8=0.
故选:B.
所以函数在点(2,8)处的切线斜率k=f′(2)=8,
所以y=2x2在点(2,8)处的切线方程为y-8=8(x-2),
即8x-y-8=0.
故选:B.
点评:本题主要考查导数的几何意义,考查学生的基本运算,比较基础.
练习册系列答案
相关题目
将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有4种颜色可供使用,则不同的染色的方法数为( )
| A、24 | B、60 | C、48 | D、72 |
若曲线xy=a(a≠0),则过曲线上任意一点的切线与两坐标轴所围成的三角形的面积是( )
| A、2a2 |
| B、a2 |
| C、2|a| |
| D、|a| |
若y=f(x)与y=3x的图象关于直线y=x对称,则( )
| A、f(x)=3x |
| B、f(x)=log3x |
| C、f(x)=3-x |
| D、f(x)=log3(-x) |
若二项式(x+
)n的展开式中所有项的系数之和为243,则展开式中x-4的系数是( )
| 2 |
| x2 |
| A、80 | B、40 | C、20 | D、10 |
已知cosθ=-
,
<θ<3π,那么sin
等于( )
| 1 |
| 5 |
| 5π |
| 2 |
| θ |
| 2 |
A、-
| ||||
B、-
| ||||
C、
| ||||
D、
|
已知α=
π,则∠α的终边所在的象限是( )
| 7 |
| 8 |
| A、第一象限 | B、第二象限 |
| C、第三象限 | D、第四象限 |