题目内容
已知各项均为正数的数列{an}的前n项和为Sn,且4Sn=an2+2an(n∈N*)
(1)求a1的值及数列{an}的通项公式;
(2)记数列{
}的前n项和为Tn,求证:Tn<
(n∈N*)
(1)求a1的值及数列{an}的通项公式;
(2)记数列{
| 1 |
| an3 |
| 7 |
| 32 |
考点:数列的求和,数列的函数特性
专题:计算题,证明题,等差数列与等比数列,不等式的解法及应用
分析:(1)令n=1,a1=S1=,即可得到首项,再由当n>1时,an=Sn-Sn-1,化简整理,即可得到an-an-1=2,再由等差数列通项公式,即可得到通项;
(2)运用放缩法,即有
=
=
•
<
•
<
•
=
(
-
)(n>1).再由裂项相消求和,即可得证.
(2)运用放缩法,即有
| 1 |
| an3 |
| 1 |
| (2n)3 |
| 1 |
| 8 |
| 1 |
| n3 |
| 1 |
| 8 |
| 1 |
| n2 |
| 1 |
| 8 |
| 1 |
| n2-1 |
| 1 |
| 16 |
| 1 |
| n-1 |
| 1 |
| n+1 |
解答:
(1)解:当n=1时,4a1=4S1=a12+2a1,解得a1=2,(0舍去),
∵4Sn=an2+2an,当n>1时,4Sn-1=an-12+2an-1,
∴两式相减可得4an=an2-an-12+2an-2an-1,
(an+an-1)(an-an-1-2)=0,
∵数列{an}各项均正,
∴an-an-1=2,∴{an}是以2为公差,2为首项的等差数列,
∴an=2+2(n-1)=2n;
(2)证明:由于
=
=
•
<
•
<
•
=
(
-
)(n>1).
则Tn=
+
+
•
+…+
•
<
+
(1-
+
-
+
-
+…+
-
)=
+
(1+
-
-
)
<
+
×(1+
)=
,
即有Tn<
.
∵4Sn=an2+2an,当n>1时,4Sn-1=an-12+2an-1,
∴两式相减可得4an=an2-an-12+2an-2an-1,
(an+an-1)(an-an-1-2)=0,
∵数列{an}各项均正,
∴an-an-1=2,∴{an}是以2为公差,2为首项的等差数列,
∴an=2+2(n-1)=2n;
(2)证明:由于
| 1 |
| an3 |
| 1 |
| (2n)3 |
| 1 |
| 8 |
| 1 |
| n3 |
| 1 |
| 8 |
| 1 |
| n2 |
| 1 |
| 8 |
| 1 |
| n2-1 |
| 1 |
| 16 |
| 1 |
| n-1 |
| 1 |
| n+1 |
则Tn=
| 1 |
| 8 |
| 1 |
| 8•23 |
| 1 |
| 8 |
| 1 |
| 33 |
| 1 |
| 8 |
| 1 |
| n3 |
<
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
<
| 1 |
| 8 |
| 1 |
| 16 |
| 1 |
| 2 |
| 7 |
| 32 |
即有Tn<
| 7 |
| 32 |
点评:本题考查数列的通项和前n项和的关系,考查等差数列的通项公式的运用,考查数列的求和方法:裂项相消法,考查运算能力,属于中档题.
练习册系列答案
相关题目
在数列{an}中,a1=1,an+1-an=2,则a51的值为( )
| A、99 | B、49 |
| C、102 | D、101 |
若集合A={x|-1≤2x+1≤3},B={x|
≤0},则A∩B=( )
| x-2 |
| x |
| A、{x|-1≤x<0} |
| B、{x|-1≤x<0} |
| C、{x|0≤x≤2} |
| D、{x|0<x≤1} |
下列命题中,真命题是( )
A、函数f(x)=tan(
| ||||||||||
| B、命题“?x∈R,x2-2>3”的否定是“?x∈R,x2-2<3” | ||||||||||
| C、z1,z2∈C,若z1,z2为共轭复数,则z1+z2为实数 | ||||||||||
D、x=
|