题目内容

16.如图,在△ABC中,B=$\frac{π}{3}$,AC=$\sqrt{3}$,D为BC边上一点.若AB=AD,则△ADC的周长的取值范围为.

分析 由正弦定理可得AB=2sinC,BC=2sinA,由AD=AB,B=60°可知A>60°,结合图形可知周长l=AD+AC+DC=2sinA+$\sqrt{3}$,结合正弦函数的性质可求.

解答 解:∵AD=AB,B=60°,
∴A>60°.
∵B=$\frac{π}{3}$,AC=$\sqrt{3}$,
∴A+C=120°即A=120°-C
由正弦定理可得AB=2sinC,BC=2sinA
∴CD=2sinA-2sinC
周长l=AD+AC+DC=2sinA+$\sqrt{3}$,
∵60°<A<120°
∴$\frac{\sqrt{3}}{2}$<sinA≤1
∴2$\sqrt{3}$<l≤2+$\sqrt{3}$.
故答案为:2$\sqrt{3}$<l≤2+$\sqrt{3}$.

点评 本题主要考查了正弦定理在求解三角形中的应用,正弦函数的性质的灵活应用是求解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网