题目内容
已知数列{an}满足:a1=
,an+1=an2-an+1,设S=
+
+…+
,求S的整数部分.
| 3 |
| 2 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2008 |
考点:数列的求和
专题:等差数列与等比数列
分析:由已知条件得
=
-
,所以S=
+
+…+
=
-
,由a1=
,得0<
<1,S=
-
=2-
,由此能求出S的整数部分是1.
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2008 |
| 1 |
| a1-1 |
| 1 |
| a2009-1 |
| 3 |
| 2 |
| 1 |
| a2009-1 |
| 1 |
| a1-1 |
| 1 |
| a2009-1 |
| 1 |
| a2009-1 |
解答:
解:∵an+1=an2-an+1,
∴an+1-1=an(an-1),
=
=
-
,
∴
=
-
,
S=
+
+…+
=
-
+
-
+…+
-
=
-
,
∵a1=
,∴
=
=2,
an+1-an=an2-2an+1=(an-1)2≥0,
∴{an}是个单调增数列,
a2=a12-a1+1=
,
a3=a22-a2+1=
,
<1,
∴0<
<1,
S=
-
=2-
,
1<S<2,∴[S]=1.
∴S的整数部分是1.
∴an+1-1=an(an-1),
| 1 |
| an+1-1 |
| 1 |
| an(an+1) |
| 1 |
| an-1 |
| 1 |
| an |
∴
| 1 |
| an |
| 1 |
| an-1 |
| 1 |
| an+1-1 |
S=
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2008 |
=
| 1 |
| a1-1 |
| 1 |
| a2-1 |
| 1 |
| a2-1 |
| 1 |
| a3-1 |
| 1 |
| a2008-1 |
| 1 |
| a2009-1 |
=
| 1 |
| a1-1 |
| 1 |
| a2009-1 |
∵a1=
| 3 |
| 2 |
| 1 |
| a1-1 |
| 1 | ||
|
an+1-an=an2-2an+1=(an-1)2≥0,
∴{an}是个单调增数列,
a2=a12-a1+1=
| 7 |
| 4 |
a3=a22-a2+1=
| 37 |
| 16 |
| 1 |
| a3-1 |
∴0<
| 1 |
| a2009-1 |
S=
| 1 |
| a1-1 |
| 1 |
| a2009-1 |
| 1 |
| a2009-1 |
1<S<2,∴[S]=1.
∴S的整数部分是1.
点评:本题考查数列的前2008项和的整数部分的求法,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
直线y=2x为双曲线C:
-
=1(a>0,b>0)的一条渐近线,则双曲线C的离心率是( )
| x2 |
| a2 |
| y2 |
| b2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|