题目内容

在平面四边形ABCD中,AD=1,CD=2,AB=3,cos∠CAD=
2
7
7

(1)求AC的长;
(2)若cos∠BAD=-
7
14
,求△ABC的面积.
考点:正弦定理
专题:计算题,解三角形
分析:(1)在△ACD中,由已知及余弦定理即可解得AC的值;
(2)先求cos∠CAD,cos∠BAD,sin∠CAD,sin∠BAD的值,从而可求sin∠BAC,即可求出S△ABC的值.
解答: 解:(1)∵在△ACD中,由余弦定理知:CD2=AD2+AC2-2AD•AC•cos∠CAD,
∴4=1+AC2AC×
2
7
7

∴可解得:AC=
7
或-
3
7
7
(舍去),
(2)∵cos∠CAD=
2
7
7
,cos∠BAD=-
7
14

∴sin∠CAD=
21
7
,sin∠BAD=
3
21
14

∵sin∠BAC=sin(∠BAD-∠CAD)=sin∠BADcos∠CAD-cos∠BADsin∠CAD=
3
21
14
×
2
7
7
+
7
14
×
21
7
=
3
2

∴S△ABC=
1
2
×AB×AC×sin∠BAC=
1
2
×3×
7
×
3
2
=
3
21
4
点评:本题主要考察了正弦定理、三角形面积公式的应用,属于基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网