题目内容
3.函数y=$\frac{1+x}{1-x}$的图象大致为( )| A. | B. | C. | D. |
分析 求出函数的定义域与值域,从而得出答案呢.
解答 解:y=$\frac{1+x}{1-x}$=-1+$\frac{2}{1-x}$,
∴该函数的定义域为{x|x≠1},值域为{y|y≠-1},
故选A.
点评 本题考查了函数的图象,主要从定义域、值域、奇偶性、单调性、特殊点等方面判断,属于中档题.
练习册系列答案
相关题目
14.
某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )
| A. | $\frac{1}{2}c{m^3}$ | B. | 1cm3 | C. | $\frac{3}{2}c{m^3}$ | D. | 3cm3 |
18.已知函数f(x)=$\frac{{e}^{x}}{x}-kx$(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )
| A. | (0,2) | B. | (0,$\frac{{e}^{2}}{4}$) | C. | (0,e) | D. | (0,+∞) |
8.为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名五年级学生进行了问卷调查得到如下列联表(平均每天喝500ml以上为常喝,体重超过50kg为肥胖):
已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为$\frac{4}{15}$
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
| 常喝 | 不常喝 | 合计 | |
| 肥胖 | 2 | ||
| 不肥胖 | 18 | ||
| 合计 | 30 |
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由;
(3)若常喝碳酸饮料且肥胖的学生中有2名女生,现从常喝碳酸饮料且肥胖的学生中抽取2人参加电视节目,则正好抽到一男一女的概率是多少?
参考数据:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
15.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+x,x≤1}\\{lo{g}_{\frac{1}{3}}x,x>1}\end{array}\right.$,若对任意的x∈R,不等式f(x)≤$\frac{5}{4}$m-m2恒成立,则实数m的取值范围为( )
| A. | [-1,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1] | C. | [-2,$\frac{1}{4}$] | D. | [$\frac{1}{3}$,1] |
12.某程序如图所示,该程序运行后输出的最后一个数是( )

| A. | $\frac{17}{16}$ | B. | $\frac{9}{8}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
13.在Rt△ABC中,AB=AC=1,若一个椭圆经过A、B两点,它的一个焦点为点C,另一个焦点在边AB上,则这个椭圆的离心率为( )
| A. | $\frac{{2\sqrt{3}-\sqrt{6}}}{2}$ | B. | $\sqrt{2}-1$ | C. | $\frac{{\sqrt{6}-\sqrt{3}}}{2}$ | D. | $\sqrt{6}-\sqrt{3}$ |