题目内容

3.设变量x,y满足$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,则x+2y的最大值为(  )
A.-2B.2C.1D.0

分析 先画出约束条件的可行域,利用目标函数的几何意义,分析后易得目标函数z=x+2y的最大值.

解答 解:由约束条件变量x,y满足$\left\{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x≥0}\end{array}\right.$,得如图所示的三角形区域,由$\left\{\begin{array}{l}{x+y=1}\\{x=0}\end{array}\right.$可得顶点A(0,1),令z=x+2y,平移直线z=x+2y,
直线z=x+2y过点 A(0,1)时,z取得最大值为2;
故选:B.

点评 在解决线性规划的小题时,我们常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网