题目内容

在等比数列{an}中,an>0(n∈N*),且a1a3=4,a3+1是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=log2an+2,求满足方程
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51
的n的值.
考点:数列的求和,数列的应用,数列与函数的综合
专题:等差数列与等比数列
分析:(1)由a1a3=4,a3+1是a2和a4的等差中项,结合等差数列的性质及通项公式可求q,a1,从而可求通项
(2)由已知可求bn,结合等差数列的求和公式及二次函数的性质可求Sn的最小值.
解答: 解:(1)由已知a1a3=4得,a22=4,2(a2q+1)=a2+a2q2
∵an>0,∴a2=2,2(2q+1)=2+2q2
∴q=2,a1=1
∴an=2n-1
(2)bn=log2an+2=n+1,
1
bnbn+1
=
1
(n+1)(n+2)
=
1
n+1
-
1
n+2

1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
25
51

可得:
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n+1
-
1
n+2
=
25
51

1
2
-
1
n+2
=
25
51

解得:n=100.
点评:本题考查等比数列的通项公式的求法,数列求和的方法,数列与函数相结合,考查分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网