题目内容
已知Sn为数列{an}的前n项和,且2an-1=Sn,n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
+
+
+…+
=n-
,n∈N*,求{bn}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足
| b1 |
| a1 |
| b2 |
| a2 |
| b3 |
| a3 |
| bn |
| an |
| n |
| 2n |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由数列递推式确定出数列为等比数列,由等比数列的通项公式得答案;
(2)由递推式
+
+
+…+
=n-
结合数列{an}的通项公式求得{bn}的通项公式,分组后由等差数列好等比数列的前n项和得答案.
(2)由递推式
| b1 |
| a1 |
| b2 |
| a2 |
| b3 |
| a3 |
| bn |
| an |
| n |
| 2n |
解答:
解:(1)当n=1时,2a1-1=S1=a1,解得a1=1.
当n>1时,an=sn-sn-1=(2an-1)-(2an-1-1)=2an-2an-1,
∴an=2an-1.
∴数列{an}是首项为1,公比为2的等比数列,
则an=2n-1;
(2)当n=1时,
=
,∴b1=
.
当n>1时,由
+
+
+…+
=n-
,得
+
+
+…+
=n-1-
,
∴
=n-
-(n-1-
)=1+
.
∵an=2n-1,
∴bn=2n-1+
,
又当n=1时符合该式,
∴bn=2n-1+
,n∈N*.
∴Tn=20+
+21+
+…+2n-1+
,
即Tn=
+
=2n-1+
-
.
当n>1时,an=sn-sn-1=(2an-1)-(2an-1-1)=2an-2an-1,
∴an=2an-1.
∴数列{an}是首项为1,公比为2的等比数列,
则an=2n-1;
(2)当n=1时,
| b1 |
| a1 |
| 1 |
| 2 |
| 1 |
| 2 |
当n>1时,由
| b1 |
| a1 |
| b2 |
| a2 |
| b3 |
| a3 |
| bn |
| an |
| n |
| 2n |
| b1 |
| a1 |
| b2 |
| a2 |
| b3 |
| a3 |
| bn-1 |
| an-1 |
| n-1 |
| 2n-1 |
∴
| bn |
| an |
| n |
| 2n |
| n-1 |
| 2n-1 |
| n-2 |
| 2n |
∵an=2n-1,
∴bn=2n-1+
| n-2 |
| 2 |
又当n=1时符合该式,
∴bn=2n-1+
| n-2 |
| 2 |
∴Tn=20+
| -1 |
| 2 |
| 0 |
| 2 |
| n-2 |
| 2 |
即Tn=
| 1-2n |
| 1-2 |
n(-
| ||||
| 2 |
| n2 |
| 4 |
| 3n |
| 4 |
点评:本题考查了数列递推式,考查了数列的分组求和,考查了等差数列和等比数列的前n项和,是中档题.
练习册系列答案
相关题目