题目内容
10.设点P是圆C:(x+4)2+(y-2)2=5上的动点,则点P到原点距离的最大值为( )| A. | $\sqrt{5}$ | B. | $2\sqrt{5}$ | C. | $3\sqrt{5}$ | D. | $4\sqrt{5}$ |
分析 求出圆心与半径,即可求出|OP|的最大值.
解答 解:圆C:(x+4)2+(y-2)2=5的圆心坐标为C(-4,2),半径为r=$\sqrt{5}$,则
∵点O为坐标原点,
∴|OP|的最大值为|OC|+r=$\sqrt{16+4}$+$\sqrt{5}$=3$\sqrt{5}$.
故选:C.
点评 本题考查圆的方程,考查|OP|的最大值,正确利用圆的图形的特殊性是关键.
练习册系列答案
相关题目
1.已知向量$\overrightarrow{a}$=(2,-n),$\overrightarrow{b}$=(Sn,n+1),n∈N*,其中Sn是数列{an}的前n项和,若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则数列{$\frac{{a}_{n}}{{a}_{n+1}{a}_{n+4}}$}的最大项的值为( )
| A. | $\frac{1}{9}$ | B. | $\frac{2}{3}$ | C. | -$\frac{1}{9}$ | D. | -$\frac{2}{3}$ |
18.
为推行“新课堂”教学法,某数学老师分别用原传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班进行教学实验,为了解教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,作出的茎叶图如图.记成绩不低于70分者为“成绩优良”.
(1)分别计算甲、乙两班20个样本中,数学分数前十的平均分;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$.(n=a+b+c+d)
独立性检验临界表
(1)分别计算甲、乙两班20个样本中,数学分数前十的平均分;
(2)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“成绩优良与教学方式有关”?
| 甲班 | 乙班 | 总计 | |
| 成绩优良 | |||
| 成绩不优良 | |||
| 总计 |
独立性检验临界表
| P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
| K0 | 2.706 | 3.841 | 5.024 | 6.635 |
20.已知集合A={-2,-1,0,1,2},B={x|(x+1)(x-2)<0},则A∩B=( )
| A. | {0,1} | B. | {-1,0} | C. | {-1,0,1} | D. | {0,1,2} |