题目内容

20.在△ABC中,角A,B,C的对边分别是a,b,c,已知$b=2,c=2\sqrt{2}$,且$C=\frac{π}{4}$,则△ABC的面积为(  )
A.$\sqrt{3}+1$B.$\sqrt{3}-1$C.4D.2

分析 由已知利用正弦定理可求sinB,结合B的范围可求B的值,进而可求A,利用三角形面积公式即可得解.

解答 解:由正弦定理$\frac{b}{sinB}=\frac{c}{sinC}⇒sinB=\frac{bsinC}{c}=\frac{1}{2}$,
又c>b,且B∈(0,π),
所以$B=\frac{π}{6}$,
所以$A=\frac{7π}{12}$,
所以$S=\frac{1}{2}bcsinA=\frac{1}{2}×2×2\sqrt{2}sin\frac{7π}{12}=\frac{1}{2}×2×2\sqrt{2}×\frac{{\sqrt{6}+\sqrt{2}}}{4}=\sqrt{3}+1$.
故选:A.

点评 本题主要考查了正弦定理,三角形面积公式,三角形内角和定理在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网