ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªA£¬B£¬CÊÇÆ½ÃæÉϲ»¹²ÏßµÄÈýµã£¬OÊÇ¡÷ABCµÄÖØÐÄ£¬¶¯µãPÂú×ã$\overrightarrow{OP}=\frac{1}{3}£¨{\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+2\overrightarrow{OC}}£©$£¬ÔòPÒ»¶¨Îª¡÷ABCµÄ£¨¡¡¡¡£©| A£® | AB±ßÖÐÏßµÄÈýµÈ·Öµã£¨·ÇÖØÐÄ£© | B£® | AB±ßµÄÖеã | ||
| C£® | AB±ßÖÐÏßµÄÖеã | D£® | ÖØÐÄ |
·ÖÎö ¸ù¾ÝÌâÒ⣬»³öͼÐΣ¬½áºÏͼÐΣ¬ÀûÓÃÏòÁ¿¼Ó·¨µÄƽÐÐËıßÐη¨ÔòÒÔ¼°¹²ÏßµÄÏòÁ¿µÄ¼Ó·¨·¨Ôò£¬¼´¿ÉµÃ³öÕýÈ·µÄ½áÂÛ£®
½â´ð
½â£ºÈçͼËùʾ£ºÉèAB µÄÖеãÊÇE£¬
¡ßOÊÇÈý½ÇÐÎABCµÄÖØÐÄ£¬
¡ß$\overrightarrow{OP}=\frac{1}{3}£¨{\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+2\overrightarrow{OC}}£©$=$\frac{1}{3}$£¨$\overrightarrow{OE}$+2$\overrightarrow{OC}$£©£¬
¡ß2$\overrightarrow{EO}$=$\overrightarrow{OC}$£¬
¡à$\overrightarrow{OP}$=$\frac{1}{3}$¡Á£¨4$\overrightarrow{EO}$+$\overrightarrow{OE}$£©=$\overrightarrow{EO}$
¡àPÔÚAB±ßµÄÖÐÏßÉÏ£¬ÊÇÖÐÏßµÄÈýµÈ·Öµã£¬²»ÊÇÖØÐÄ£®
¹ÊÑ¡£ºA
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄÓ¦ÓÃÎÊÌ⣬Ҳ¿¼²éÁËÈý½ÇÐεÄÖØÐĵÄÓ¦ÓÃÎÊÌ⣬ÊÇ×ÛºÏÐÔÌâÄ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðÊÇa£¬b£¬c£¬ÒÑÖª$b=2£¬c=2\sqrt{2}$£¬ÇÒ$C=\frac{¦Ð}{4}$£¬Ôò¡÷ABCµÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | $\sqrt{3}+1$ | B£® | $\sqrt{3}-1$ | C£® | 4 | D£® | 2 |
17£®ÔÚ¡÷ABCÖУ¬$¡ÏA=\frac{¦Ð}{3}£¬BC=4\sqrt{3}$£¬Ôò¡÷ABCµÄÖܳ¤Îª£¨¡¡¡¡£©
| A£® | $4\sqrt{3}+8\sqrt{3}sin£¨B+\frac{¦Ð}{6}£©$ | B£® | $4\sqrt{3}+8sin£¨B+\frac{¦Ð}{3}£©$ | C£® | $4\sqrt{3}+8\sqrt{3}cos£¨B+\frac{¦Ð}{6}£©$ | D£® | $4\sqrt{3}+8cos£¨B+\frac{¦Ð}{3}£©$ |