ÌâÄ¿ÄÚÈÝ

14£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬ÇÒÇúÏßCµÄ×ó½¹µãFÔÚÖ±ÏßlÉÏ£®
£¨1£©ÇóʵÊýmºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|AF|}$+$\frac{1}{|BF|}$£®

·ÖÎö £¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³ÌÁ½±ßƽ·½£¬È¥·Öĸ£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµÇó³öCµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ³ö×󽹵㣬´úÈëÖ±Ïß·½³ÌÇó³öm£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇó³ö|AF|£¬|BF|£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄÆÕ·Ç³£Îªx-m=y£¬¼´x-y-m=0£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬¼´¦Ñ2+2¦Ñ2sin2¦È=12£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+3y2=12£¬¼´$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$£®
¡àÇúÏßCµÄ×ó½¹µãFΪ£¨-2$\sqrt{2}$£¬0£©£®
¡ßFÔÚÖ±ÏßlÉÏ£¬¡à-2$\sqrt{2}$-m=0£¬¡àm=-2$\sqrt{2}$£®
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
´úÈëÇúÏßCµÄ·½³Ìx2+3y2=12µÃ£ºt2-2t-2=0£®
¡àt1=1+$\sqrt{3}$£¬t2=1-$\sqrt{3}$£®
¡à$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{1}{{|t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}-1}$=$\sqrt{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±Ïß²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒåÓëÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø