ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬ÇÒÇúÏßCµÄ×ó½¹µãFÔÚÖ±ÏßlÉÏ£®£¨1£©ÇóʵÊýmºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó$\frac{1}{|AF|}$+$\frac{1}{|BF|}$£®
·ÖÎö £¨1£©½«ÇúÏßCµÄ¼«×ø±ê·½³ÌÁ½±ßƽ·½£¬È¥·Öĸ£¬¸ù¾Ý¼«×ø±êÓëÖ±½Ç×ø±êµÄ¶ÔÓ¦¹ØÏµÇó³öCµÄÖ±½Ç×ø±ê·½³Ì£¬µÃ³ö×󽹵㣬´úÈëÖ±Ïß·½³ÌÇó³öm£»
£¨2£©½«Ö±ÏßlµÄ²ÎÊý·½³Ì´úÈëÇúÏßCµÄÆÕͨ·½³Ì£¬ÀûÓòÎÊýµÄ¼¸ºÎÒâÒåÇó³ö|AF|£¬|BF|£®
½â´ð ½â£º£¨1£©Ö±ÏßlµÄÆÕ·Ç³£Îªx-m=y£¬¼´x-y-m=0£¬
¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2\sqrt{3}}{\sqrt{1+2si{n}^{2}¦È}}$£¬¼´¦Ñ2+2¦Ñ2sin2¦È=12£¬
¡àÇúÏßCµÄÖ±½Ç×ø±ê·½³ÌΪx2+3y2=12£¬¼´$\frac{{x}^{2}}{12}+\frac{{y}^{2}}{4}=1$£®
¡àÇúÏßCµÄ×ó½¹µãFΪ£¨-2$\sqrt{2}$£¬0£©£®
¡ßFÔÚÖ±ÏßlÉÏ£¬¡à-2$\sqrt{2}$-m=0£¬¡àm=-2$\sqrt{2}$£®
£¨2£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=-2\sqrt{2}+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®
´úÈëÇúÏßCµÄ·½³Ìx2+3y2=12µÃ£ºt2-2t-2=0£®
¡àt1=1+$\sqrt{3}$£¬t2=1-$\sqrt{3}$£®
¡à$\frac{1}{|AF|}$+$\frac{1}{|BF|}$=$\frac{1}{{|t}_{1}|}+\frac{1}{|{t}_{2}|}$=$\frac{1}{1+\sqrt{3}}$+$\frac{1}{\sqrt{3}-1}$=$\sqrt{3}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì£¬¼«×ø±ê·½³ÌÓëÆÕͨ·½³ÌµÄת»¯£¬Ö±Ïß²ÎÊý·½³ÌµÄ¼¸ºÎÒâÒåÓëÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| A£® | 1+$\sqrt{3}$ | B£® | 1+$\sqrt{2}$ | C£® | $\sqrt{3}$ | D£® | $\sqrt{2}$ |
| A£® | Èô¦Á¡Í¦Â£¬a?¦Á£¬Ôòa¡Í¦Â | B£® | Èô¦Á¡Í¦Â£¬a¡Í¦Â£¬Ôòa¡Î¦Á | C£® | Èôa?¦Á£¬a¡Î¦Â£¬Ôò¦Á¡Î¦Â | D£® | Èôa?¦Á£¬a¡Í¦Â£¬Ôò¦Á¡Í¦Â |
| A£® | [$\frac{3}{4}$£¬$\frac{4}{3}$] | B£® | [$\frac{3}{4}$£¬$\frac{4}{3}$£© | C£® | £¨$\frac{3}{4}$£¬$\frac{4}{3}$£© | D£® | £¨$\frac{3}{4}$£¬$\frac{4}{3}$] |