ÌâÄ¿ÄÚÈÝ
2£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{sinx£¬sinx£¾cosx}\\{cosx£¬sinx¡Ücosx}\end{array}\right.$£¬¹ØÓÚf£¨x£©µÄÐðÊö¢Ù×îСÕýÖÜÆÚΪ2¦Ð
¢ÚÓÐ×î´óÖµ1ºÍ×îСֵ-1
¢Û¶Ô³ÆÖáΪֱÏß$x=k¦Ð+\frac{¦Ð}{4}£¨{k¡ÊZ}£©$
¢Ü¶Ô³ÆÖÐÐÄΪ$£¨{k¦Ð+\frac{¦Ð}{4}£¬0}£©£¨k¡ÊZ£©$
¢ÝÔÚ$[{\frac{¦Ð}{2}£¬¦Ð}]$Éϵ¥µ÷µÝ¼õ
ÆäÖÐÕýÈ·µÄÃüÌâÐòºÅÊǢ٢ۢݣ®£¨°ÑËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©
·ÖÎö ½â£º»³öº¯Êýf£¨x£©=$\left\{\begin{array}{l}{sinx£¬sinx£¾cosx}\\{cosx£¬sinx¡Ücosx}\end{array}\right.$µÄͼÏó£¬ÊýÐνáºÏ¿ÉµÃ½áÂÛ£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=$\left\{\begin{array}{l}{sinx£¬sinx£¾cosx}\\{cosx£¬sinx¡Ücosx}\end{array}\right.$£¬±íʾȡsinxºÍcosxÖÐÖµ½ÏСµÄ£¬ËüµÄͼÏóÈçͼÖкìÉ«²¿·ÖËùʾ£º
¶øsinxºÍcosx¶¼ÊÇÖÜÆÚΪ2¦ÐµÄº¯Êý£¬¡àf£¨x£©µÄ×îСÕýÖÜÆÚΪ2¦Ð£¬¹Ê¢ÙÕýÈ·£®
½áºÏf£¨x£©µÄͼÏó¿ÉµÃf£¨x£©µÄ×î´óֵΪ1£¬×îСֵΪ-$\frac{\sqrt{2}}{2}$£¬¹Ê¢Ú´íÎó£®
½áºÏf£¨x£©µÄͼÏó¿ÉµÃf£¨x£©µÄ×îСֵΪ-$\frac{\sqrt{2}}{2}$£¬f£¨x£©µÄͼÏóµÄ¶Ô³ÆÖáΪֱÏß$x=k¦Ð+\frac{¦Ð}{4}£¨{k¡ÊZ}£©$£¬
¹Ê¢ÛÕýÈ·£¬¢Ü´íÎó£®
º¯Êýf£¨x£©ÔÚ$[{\frac{¦Ð}{2}£¬¦Ð}]$Éϵ¥µ÷µÝ¼õ£¬¹Ê¢ÝÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ý£®![]()
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÈý½Çº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
7£®ÒÑÖªf£¨x£©¡¢g£¨x£©¡¢h£¨x£©¾ùΪһ´Îº¯Êý£¬Èô¶ÔʵÊýxÂú×㣺|f£¨x£©|+|g£¨x£©|+h£¨x£©=$\left\{\begin{array}{l}{4x+2}&{x¡Ý2}\\{δ֪}&{-\frac{1}{2}¡Üx£¼2}\\{-2x+4}&{x£¼-\frac{1}{2}}\end{array}\right.$£¬Ôòh£¨x£©µÄ½âÎöʽΪ£¨¡¡¡¡£©
| A£® | 2x+6 | B£® | 6x-2 | C£® | 3x-1 | D£® | x+3 |
14£®Ö±Ïßy=kx+1-kÓëÍÖÔ²$\frac{x^2}{9}+\frac{y^2}{4}=1$µÄλÖùØÏµÎª£¨¡¡¡¡£©
| A£® | Ïཻ | B£® | ÏàÇÐ | C£® | ÏàÀë | D£® | ²»È·¶¨ |
11£®Èôº¯Êýy=x2-mx+1ÔÚÇø¼ä[1£¬2]Éϵ¥µ÷µÝÔö£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬2] | B£® | £¨-¡Þ£¬2£© | C£® | £¨4£¬+¡Þ£© | D£® | [4£¬+¡Þ£© |