题目内容
7.在平面直角坐标系xOy中,已知P是函数f(x)=xlnx-x的图象上的动点,该曲线在点P处的切线l交y轴于点M(0,yM),过点P作l的垂线交y轴于点N(0,yN).则$\frac{y_N}{y_M}$的范围是(-∞,-1]∪[3,+∞).分析 设出P的坐标,求导函数,可得曲线在点P处的切线l的方程,过点P作l的垂线的方程,令x=0,可得yM=-a,yN=alna-a+$\frac{a}{lna}$,进而可求$\frac{y_N}{y_M}$=-lna+1-$\frac{1}{lna}$,利用基本不等式,即可求出$\frac{y_N}{y_M}$的范围.
解答 解:设P(a,alna-a),
∵f(x)=xlnx-x,
∴f′(x)=lnx,
∴曲线在点P处的切线l的方程为y-alna+a=lna(x-a),即y=-a+xlna.
令x=0,可得yM=-a,
过点P作l的垂线的方程为y-alna+a=-$\frac{1}{lna}$(x-a),
令x=0,可得yN=alna-a+$\frac{a}{lna}$,
∴$\frac{y_N}{y_M}$=-lna+1-$\frac{1}{lna}$,
∵lna+$\frac{1}{lna}$≥2或lna+$\frac{1}{lna}$≤-2,
∴-(lna+$\frac{1}{lna}$)≤-2或-(lna+$\frac{1}{lna}$)≥2,
∴$\frac{y_N}{y_M}$=-lna+1-$\frac{1}{lna}$的范围是(-∞,-1]∪[3,+∞).
故答案为:(-∞,-1]∪[3,+∞).
点评 本题考查导数知识的运用,考查导数的几何意义,考查基本不等式的运用,属于中档题.
练习册系列答案
相关题目
17.已知△ABC中,∠A,∠B,∠C的对边长度分别为a,b,c,已知点O为该三角形的外接圆圆心,点D,E,F分别为边BC,AC,AB的中点,则OD:OE:OF=( )
| A. | a:b:c | B. | $\frac{1}{a}:\frac{1}{b}:\frac{1}{c}$ | C. | sinA:sinB:sinC | D. | cosA:cosB:cosC |
18.平面 α∥平面 β,直线 a⊆α,下列四个说法中,正确的个数是
①a与β内的所有直线平行;
②a与β内的无数条直线平行;
③a与β内的任何一条直线都不垂直;
④a与β无公共点.( )
①a与β内的所有直线平行;
②a与β内的无数条直线平行;
③a与β内的任何一条直线都不垂直;
④a与β无公共点.( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
15.函数f(x)=x3+ax2+(a-3)x(a∈R)的导函数是f'(x),若f'(x)是偶函数,则以下结论正确的是( )
| A. | y=f(x)的图象关于y轴对称 | B. | y=f(x)的极小值为-2 | ||
| C. | y=f(x)的极大值为-2 | D. | y=f(x)在(0,2)上是增函数 |