题目内容

如图,它表示电流I=Asin(ωt+φ)(A>0,ω>0)在一个周期内的图象,则I=Asin(ωt+φ)的解析式为(  )
A、I=
3
sin(
100π
3
t+
π
3
B、I=
3
sin(
100π
3
+
π
6
C、I=
3
sin(
50π
3
t+
π
6
D、I=
3
sin(
50π
3
t+
π
3
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.
解答: 解:由函数的图象可得A=
3
1
2
T=
1
2
ω
=
1
20
-
1
50
,求得ω=
100π
3

在根据五点法作图可得
100π
3
×
1
50
+φ=π,求得φ=
π
3

故有 I=
3
sin(
100π
3
t+
π
3
),
故选:A.
点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网