ÌâÄ¿ÄÚÈÝ
13£®ÒÑ֪ʵÊýx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}x¡Ý1\\ y¡Ýx-1\\ x+y¡Ü4\end{array}\right.$£¬Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬x2+y2µÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©| A£® | $[\frac{{3\sqrt{2}}}{2}£¬\sqrt{5}]$ | B£® | $[\frac{{3\sqrt{2}}}{2}£¬5]$ | C£® | $[\frac{9}{2}£¬5]$ | D£® | $[\sqrt{5}£¬\frac{9}{2}]$ |
·ÖÎö ×÷³ö²»µÈʽ×é¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬¼´¿ÉµÃµ½½áÂÛ
½â´ð
½â£º×÷³ö²»µÈʽ¶ÔÓ¦µÄÆ½ÃæÇøÓò£¬
µ±Ä¿±êº¯Êýz=x+y£¬Ôòµ±z=3ʱ£¬¼´x+y=3ʱ£¬×÷³ö´ËʱµÄÖ±Ïߣ¬
Ôòx2+y2µÄ¼¸ºÎÒâÒåΪ¶¯µãP£¨x£¬y£©µ½ÔµãµÄ¾àÀëµÄƽ·½£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏàÇÐʱ£¬¾àÀë×îС£¬
¼´Ôµãµ½Ö±Ïßx+y=3µÄ¾àÀëd=$\frac{3}{\sqrt{2}}$£¬¼´×îСֵΪd2=$\frac{9}{2}$£¬
µ±Ö±Ïßx+y=3ÓëÔ²x2+y2=r2ÏཻÓëµãB»òCʱ£¬¾àÀë×î´ó£¬
ÓÉ$\left\{\begin{array}{l}{x=1}\\{x+y=3}\end{array}\right.$£¬½âµÃx=1£¬y=2£¬¼´B£¨1£¬2£©£¬
ÓÉ$\left\{\begin{array}{l}{x+y=3}\\{x-y=1}\end{array}\right.$£¬½âµÃx=2£¬y=1£¬¼´C£¨2£¬1£©
´Ëʱr2=x2+y2=22+12=5£¬
¹ÊÑ¡£ºC£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÏßÐԹ滮µÄÓ¦Óã¬ÀûÓÃÄ¿±êº¯ÊýµÄ¼¸ºÎÒâÒ壬½áºÏÊýÐνáºÏµÄÊýѧ˼ÏëÊǽâ¾ö´ËÀàÎÊÌâµÄ»ù±¾·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
14£®ÔÚÏÂÁÐÇø¼äÖУ¬º¯Êýf£¨x£©=lgx-$\frac{1}{x}$µÄÁãµãËùÔÚµÄÇø¼äÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬1£© | B£® | £¨1£¬2£© | C£® | £¨2£¬3£© | D£® | £¨3£¬4£© |
18£®ÒÑÖªp1£ºÖ±Ïßl1£ºx-y-1=0ÓëÖ±Ïßl2£ºx+ay-2=0ƽÐУ¬q£ºa=-1£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
| A£® | ³äÒªÌõ¼þ | B£® | ³ä·Ö²»±ØÒªÌõ¼þ | ||
| C£® | ±ØÒª²»³ä·ÖÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
5£®º¯Êýf£¨x£©=$\sqrt{x+1}$+lg£¨1-x£©µÄ¶¨ÒåÓòΪ£¨¡¡¡¡£©
| A£® | [-1£¬1] | B£® | [-1£¬+¡Þ£© | C£® | [-1£¬1£© | D£® | £¨-¡Þ£¬1£© |
2£®ÏÂÁÐË«ÇúÏßÖУ¬½¹µãÔÚxÖáÉÏÇÒ½¥½üÏß·½³ÌΪy=¡À$\frac{1}{4}$xµÄÊÇ£¨¡¡¡¡£©
| A£® | x2-$\frac{{y}^{2}}{16}$=1 | B£® | $\frac{{x}^{2}}{16}$-y2=1 | C£® | $\frac{{y}^{2}}{16}$-x2=1 | D£® | y2-$\frac{{x}^{2}}{16}$=1 |
3£®ÒÑÖª¼¯ºÏA={-3£¬-2£¬-1£¬0£¬1£¬2}£¬B={x|x2¡Ü3}£¬ÔòA¡ÉB=£®£¨¡¡¡¡£©
| A£® | {0£¬2} | B£® | {-1£¬0£¬1} | C£® | {-3£¬-2£¬-1£¬0£¬1£¬2} | D£® | [0£¬2] |