ÌâÄ¿ÄÚÈÝ
6£®Èç¹û¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺¶ÔÓÚÈÎÒâx1¡Ùx2£¬¶¼ÓÐx1f£¨x1£©+x2f£¨x2£©¡Ýx1f£¨x2£©+x2f£¨x1£©£¬Ôò³Æf£¨x£©Îª¡°Hº¯Êý¡±£®¸ø³öÏÂÁк¯Êý£º¢Ùy=-x3+x+l£»
¢Úy=3x-2£¨sinx-cosx£©£»
¢Ûy=l-ex£»
¢Üf£¨x£©=$\left\{\begin{array}{l}{lnx£¨x¡Ý1£©}\\{0£¨x£¼1£©}\end{array}\right.$£¬
ÆäÖС°Hº¯Êý¡±µÄ¸öÊýÓУ¨¡¡¡¡£©
| A£® | 3¸ö | B£® | 2¸ö | C£® | 1¸ö | D£® | 0¸ö |
·ÖÎö ¸ù¾ÝÌâÒ⣬½«x1f£¨x1£©+x2f£¨x2£©¡Ýx1f£¨x2£©+x2f£¨x1£©±äÐοɵÃ[f£¨x1£©-f£¨x2£©]£¨x1-x2£©¡Ý0£¬½ø¶ø·ÖÎö¿ÉµÃÈôº¯Êýf£¨x£©Îª¡°Hº¯Êý¡±£¬Ôòº¯Êýf£¨x£©ÎªÔöº¯Êý»ò³£Êýº¯Êý£»¾Ý´ËÒÀ´Î·ÖÎöËù¸øº¯ÊýµÄµ¥µ÷ÐÔ£¬×ۺϿɵô𰸣®
½â´ð ½â£º¸ù¾ÝÌâÒ⣬¶ÔÓÚx1f£¨x1£©+x2f£¨x2£©¡Ýx1f£¨x2£©+x2f£¨x1£©£¬
ÔòÓÐf£¨x1£©£¨x1-x2£©-f£¨x2£©£¨x1-x2£©¡Ý0£¬
¼´[f£¨x1£©-f£¨x2£©]£¨x1-x2£©¡Ý0£¬
·ÖÎö¿ÉµÃ£ºÈôº¯Êýf£¨x£©Îª¡°Hº¯Êý¡±£¬Ôòº¯Êýf£¨x£©ÎªÔöº¯Êý»ò³£Êýº¯Êý£»
¶ÔÓÚ¢Ù¡¢y=-x3+x+l£¬ÓÐy¡ä=-3x2+l£¬²»ÊÇÔöº¯ÊýÒ²²»Êdz£Êýº¯Êý£¬ÔòÆä²»ÊÇ¡°Hº¯Êý¡±£¬
¶ÔÓÚ¢Ú¡¢y=3x-2£¨sinx-cosx£©£»ÓÐy¡ä=3-2£¨sinx+cosx£©=3-2$\sqrt{2}$sin£¨x+$\frac{¦Ð}{4}$£©£¬ÓÐy¡ä¡Ý0£¬
y=3x-2£¨sinx-cosx£©ÎªÔöº¯Êý£¬ÔòÆäÊÇ¡°Hº¯Êý¡±£¬
¶ÔÓÚ¢Û¡¢y=l-ex=-ex+1£¬ÊǼõº¯Êý£¬ÔòÆä²»ÊÇ¡°Hº¯Êý¡±£¬
¶ÔÓڢܡ¢f£¨x£©=$\left\{\begin{array}{l}{lnx£¨x¡Ý1£©}\\{0£¨x£¼1£©}\end{array}\right.$£¬µ±x£¼1ʱÊdz£Êýº¯Êý£¬µ±x¡Ý1ʱÊÇÔöº¯Êý£¬ÔòÆäÊÇ¡°Hº¯Êý¡±£¬
¹Ê¡°Hº¯Êý¡±ÓÐ2¸ö£¬
¹ÊÑ¡£ºB£®
µãÆÀ ±¾Ì⿼²éº¯Êýµ¥µ÷ÐÔµÄÅж¨ÓëÓ¦Ó㬹ؼüÊÇÒÀ¾Ýx1f£¨x1£©+x2f£¨x2£©¡Ýx1f£¨x2£©+x2f£¨x1£©£¬Åжϳöº¯ÊýµÄµ¥µ÷ÐÔ£®
| A£® | $£¨\frac{4}{9}£¬\frac{8}{9}£©$ | B£® | $£¨\frac{2}{9}£¬\frac{4}{9}£©$ | C£® | £¨2£¬0£© | D£® | £¨9£¬0£© |
| A£® | -$\frac{1}{2}$i | B£® | $\frac{1}{2}$i | C£® | -$\frac{1}{2}$ | D£® | $\frac{1}{2}$ |
| A£® | $8\sqrt{2}¦Ð$ | B£® | $8£¨3-\sqrt{2}£©¦Ð$ | C£® | $16£¨\sqrt{2}-1£©¦Ð$ | D£® | $16£¨2-\sqrt{2}£©¦Ð$ |
| A£® | $?x¡Ê£¨1£¬+¡Þ£©£¬x_0^2+2{x_0}+2£¾0$ | B£® | $?x¡Ê£¨{-¡Þ£¬1}]£¬x_0^2+2{x_0}+2£¾0$ | ||
| C£® | $?{x_0}¡Ê£¨1£¬+¡Þ£©£¬x_0^2+2{x_0}+2£¾0$ | D£® | $?{x_0}¡Ê£¨{-¡Þ£¬1}]£¬x_0^2+2{x_0}+2£¾0$ |