题目内容
在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0对任意n∈N*)成立,令bn=an+1-an,且{bn}是等比数列.
(1)求实数k的值;
(2)求数列{an}的通项公式;
(3)求证:
+
+
+…+
<
.
(1)求实数k的值;
(2)求数列{an}的通项公式;
(3)求证:
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 34 |
| 21 |
考点:数列的求和
专题:应用题
分析:(1)由已知条件求出数列{an}的前四项,由此能求出数列{bn},再由{bn}是等比数列,能求出k.
(2)由(1)知b1=a2-a1 =2,
=2,从而得到bn=2n,由此利用累加法能求出数列{an}的通项公式.(3)由an=2n-1,2n-1>2n-2=2(2n-1-1),利用放缩法能证明
+
+
+…+
<
.
(2)由(1)知b1=a2-a1 =2,
| bn+1 |
| bn |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 34 |
| 21 |
解答:
(1)解:∵在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0对任意n∈N*)成立,
∴a1=1,a2=3,a3=9-k,a4=27-6k,
∵bn=an+1-an,
∴b1=2,b2=6-k,b3=18-5k,
∵{bn}是等比数列,
∴b22=b1•b3,即(6-k)2=2×(18-5k),
解得k=2或k=0(舍),
当k=2时,an+2=3an+1-2an,即an+2-an+1=2(an+1-an),
∴
=2,
∴k=2时满足条件.
(2)解:∵b1=a2-a1 =2,
=2,
∴bn=2n,
∴a2-a1=2,a3-a2=22,…,an-an-1=2n-1,
∴an-a1=2+22+…+2n-1,
∴an=1+2+22+23+…+2n-1
=
=2n-1.
∴an=2n-1.
(3)证明:∵an=2n-1,2n-1>2n-2=2(2n-1-1),
∴
=
<
×
=
,
∴
+
+
+…+
=
+
+
+…+
<
+
+
+
+…+
=
+
+
[1-(
)n-2]
<1+
+
=
.
∴
+
+
+…+
<
.
∴a1=1,a2=3,a3=9-k,a4=27-6k,
∵bn=an+1-an,
∴b1=2,b2=6-k,b3=18-5k,
∵{bn}是等比数列,
∴b22=b1•b3,即(6-k)2=2×(18-5k),
解得k=2或k=0(舍),
当k=2时,an+2=3an+1-2an,即an+2-an+1=2(an+1-an),
∴
| bn+1 |
| bn |
∴k=2时满足条件.
(2)解:∵b1=a2-a1 =2,
| bn+1 |
| bn |
∴bn=2n,
∴a2-a1=2,a3-a2=22,…,an-an-1=2n-1,
∴an-a1=2+22+…+2n-1,
∴an=1+2+22+23+…+2n-1
=
| 1×(1-2n) |
| 1-2 |
=2n-1.
∴an=2n-1.
(3)证明:∵an=2n-1,2n-1>2n-2=2(2n-1-1),
∴
| 1 |
| an |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2n-1-1 |
| 1 |
| 2an-1 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
=
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 2n -1 |
<
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 14 |
| 1 |
| 7•2n-3 |
=
| 1 |
| 1 |
| 1 |
| 3 |
| 2 |
| 7 |
| 1 |
| 2 |
<1+
| 1 |
| 3 |
| 2 |
| 7 |
| 34 |
| 21 |
∴
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 34 |
| 21 |
点评:本题考查实数值和数列的通项公式的求法,考查不等式的证明,解题时要熟练掌握等比数列的性质,注意放缩法在证明题中的合理运用.
练习册系列答案
相关题目
已知向量
=(3,1),
=(x,-2),
=(0,2),若
⊥(
-
),则实数x的值为( )
| a |
| b |
| c |
| a |
| b |
| c |
A、
| ||
B、
| ||
C、-
| ||
D、-
|
若(
)x-1>9,则x的取值范围是( )
| 1 |
| 3 |
| A、(-1,+∞) |
| B、(-∞,2) |
| C、(-∞,-1) |
| D、[2,+∞) |