题目内容
4.设集合A={x|x2+2x=0},B={x|x2+2(a+1)x+a2=0},若B⊆A,求实数a的取值范围.分析 先解出集合A,再根B⊆A,分类讨论,进而解得答案.
解答 解:A={0,-2},
∵B⊆A,
∴(1)若B=∅,则△=4(a+1)2-4a2<0,解得a<-$\frac{1}{2}$,
(2)若B={0},则$\left\{\begin{array}{l}{△=0}\\{{a}^{2}=0}\end{array}\right.$,此时解集为空集;
(3)若B={-2},则$\left\{\begin{array}{l}{△=0}\\{4-4(a+1)+{a}^{2}=0}\end{array}\right.$,此时解集为空集;
(4)若B={0,-2},则$\left\{\begin{array}{l}{-2=-2(a+1)}\\{0={a}^{2}}\end{array}\right.$,解得a=0.
综上所述,a的取值为a<-$\frac{1}{2}$或a=0.
点评 本题注意考查集合的关系和一元二次方程的解,属于基础题.
练习册系列答案
相关题目
15.直线$\left\{{\begin{array}{l}{x=-tcos{{20}°}}\\{y=3+tsin{{20}°}}\end{array}}\right.$(t为参数)的倾斜角是( )
| A. | 20° | B. | 70° | C. | 110° | D. | 160° |
19.如果f($\sqrt{x}$+1)=x+2$\sqrt{x}$,则f(x)的解析式为( )
| A. | f(x)=x2(x≥1) | B. | f(x)=x2-1(x≥0) | C. | f(x)=x2-1(x≥1) | D. | f(x)=x2(x≥0) |