题目内容
15.直线$\left\{{\begin{array}{l}{x=-tcos{{20}°}}\\{y=3+tsin{{20}°}}\end{array}}\right.$(t为参数)的倾斜角是( )| A. | 20° | B. | 70° | C. | 110° | D. | 160° |
分析 消去参数,求出直线的斜率,利用斜率和倾斜角之间的关系进行求解即可.
解答 解:消去参数得直线的普通方程为$\frac{x}{y-3}$=$\frac{-tcos20°}{tsin20°}$=-cot20°,
即-(y-3)cot20°=x,即y=-tan20°x+3,
则直线的斜率k=tanα=-tan20°=tan(180°-20°)=tan160°,
即倾斜角为160°,
故选:D
点评 本题主要考查参数方程的应用,消去参数求出直线的普通方程是解决本题的关键.
练习册系列答案
相关题目
5.为迎接2013年全运会的到来,组委会在大连市招募了100名志愿者,其中男、女志愿者各50名,调查是否喜欢运动得到如下统计数据.由于一些原因,丢失了其中四个数据,目前知道这四个数据c,a,b,d恰好成递增的等差数列.
(Ⅰ)将联表中数据补充完整,并判断是否有95%的把握认为性别与运动有关?
(Ⅱ) 调查中显示喜欢运动的男志愿者中有10%懂得医疗救护,而喜欢运动的女志愿者中有40%懂得医疗救护,从中抽取2人组成医疗救护小组,则这个医疗救护小组恰好是一男一女的概率有多大?
附:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| 喜欢运动 | 不喜欢运动 | 总计 | |
| 男 | a | b | 50 |
| 女 | c | d | 50 |
| 总计 | 30 | 70 | 100 |
(Ⅱ) 调查中显示喜欢运动的男志愿者中有10%懂得医疗救护,而喜欢运动的女志愿者中有40%懂得医疗救护,从中抽取2人组成医疗救护小组,则这个医疗救护小组恰好是一男一女的概率有多大?
附:χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
| P(χ2≥k) | 0.05 | 0.001 |
| k | 3.841 | 6.635 |
6.已知函数g(x)=$\sqrt{2{x^2}-3x+1}$,则函数g(x)的定义域为( )
| A. | (-∞,$\frac{1}{2}$]∪[2,+∞) | B. | [$\frac{1}{2}$,1] | C. | (-∞,$\frac{1}{2}$]∪[1,+∞) | D. | (-∞,-1]∪[$\frac{1}{2}$,+∞) |
20.已知直线l:$\left\{\begin{array}{l}{x=1+t}\\{y=1+at}\end{array}\right.$(t为参数)与曲线ρ2=$\frac{16}{1+3si{n}^{2}θ}$的相交弦中点坐标为(1,1),则a等于( )
| A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
7.定义运算(a,b)?(c,d)=ac-bd,则符合条件(z,1-2i)?(-1,1+i)=0的复数z的所对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |