题目内容
16.在△ABC中,角A,B,C的对边分别为a,b,c,且 $\frac{cosB}{b}+\frac{cosC}{2a+c}$=0.(Ⅰ)求角B的大小;
(Ⅱ)若b=$\sqrt{13}$,a+c=4,求△ABC的面积.
分析 (Ⅰ)由正弦定理和两角和的正弦公式和诱导公式可得cosB=-$\frac{1}{2}$,问题得以解决,
(Ⅱ)由余弦定理可得ac=3,再根据三角形的面积公式计算即可.
解答 解:(I)由$\frac{cosB}{b}+\frac{cosC}{2a+c}=0$知:(2a+c)cosB+bcosC=0
由正弦定理知:(2sinA+sinC)cosB+sinBcosC=0
即2sinAcosB+sinCcosB+sinBcosC=0,
∴2sinAcosB=-sin(B+C)
即$cosB=-\frac{1}{2}$,
又 B∈(0,π),
∴$B=\frac{2π}{3}$;
( II)在△ABC中由余弦定理知:b2=a2+c2-2accosB,
∴b2=(a+c)2-2ac-2accosB,
又$b=\sqrt{13},a+c=4,B=\frac{2π}{3}$,
∴13=16-2ac+ac,
∴ac=3
∴${s_{△ABC}}=\frac{1}{2}acsinB=\frac{{3\sqrt{3}}}{4}$.
点评 本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.
练习册系列答案
相关题目
4.函数$f(x)=2sin({ωx+φ})({0<ω<12,|φ|<\frac{π}{2}})$,若$f(0)=-\sqrt{3}$,且函数f(x)的图象关于直线$x=-\frac{π}{12}$对称,则以下结论正确的是( )
| A. | 函数f(x)的最小正周期为$\frac{π}{3}$ | |
| B. | 函数f(x)的图象关于点$({\frac{7π}{9},0})$对称 | |
| C. | 函数f(x)在区间$({\frac{π}{4},\frac{11π}{24}})$上是增函数 | |
| D. | 由y=2cos2x的图象向右平移$\frac{5π}{12}$个单位长度可以得到函数f(x)的图象 |
11.设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2-x,则$f({-\frac{5}{2}})$=( )
| A. | $-\frac{1}{4}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
1.下列函数是偶函数的是( )
| A. | y=tan3x | B. | y=cosx | C. | y=2sinx-1 | D. | y=2x |