题目内容
某公园现有A、B、C三只小船,A可乘3人,B船可乘2人,C船可乘1人,今有三个成人和2个儿童分乘这些船只(每船必须坐人),为安全起见,儿童必须由大人陪同方可乘船,他们分乘这些船只的方法有( )
| A、48 | B、36 | C、30 | D、18 |
考点:排列、组合的实际应用
专题:排列组合
分析:第一类,若2个儿童全乘A船,则需要选出一个大人陪同,且另外两个大人一人乘B,一人乘C,第二类,若2个儿童一个乘A船,另一个乘B船,则3个大人必须每人一船,进而由分类计数原理计算可得答案.
解答:
解:若2个儿童全乘A船,则需要选出一个大人陪同,且另外两个大人一人乘B,一人乘C,
故乘船方法
•A22 =6种.
若2个儿童一个乘A船,另一个乘B船,则3个大人必须每人一船,
故乘船方法有
×
=12 种,
故所有的不同的安排方法有6+12=18种.
故选:D
故乘船方法
| C | 1 3 |
若2个儿童一个乘A船,另一个乘B船,则3个大人必须每人一船,
故乘船方法有
| A | 2 2 |
| A | 3 3 |
故所有的不同的安排方法有6+12=18种.
故选:D
点评:本题考查的是排列问题,并且元素的要求很多,把排列问题包含在实际问题中,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.
练习册系列答案
相关题目
已知函数f(x)=
+
-1其定义域是( )
| 1-x |
| x+3 |
| A、(-1,3) |
| B、[-1,3] |
| C、(-3,1) |
| D、[-3,1] |
设a=(
)
,b=(
)
,c=(
)
,则a,b,c的大小关系是( )
| 5 |
| 7 |
| 4 |
| 7 |
| 4 |
| 7 |
| 5 |
| 7 |
| 4 |
| 7 |
| 4 |
| 7 |
| A、a>b>c |
| B、c>a>b |
| C、b>c>a |
| D、a>c>b |
若集合M={0,1,2,3,4},N={x|x是偶数},则集合M∩N的子集个数为( )
| A、2 | B、4 | C、6 | D、8 |
命题p:函数y=log2(x+
-3)在区间[2,+∞)上是增函数;命题q:y=log2(ax2-4x+1)函数的值域为R.则p是q成立的( )
| a |
| x |
| A、充分不必要条件 |
| B、必要不充分条件 |
| C、充分必要条件 |
| D、既不充分也不必要条件 |
方程x3-7x2+16x-12=0的实根的个数( )
| A、3 | B、2 | C、1 | D、0 |
设函数y=f(x)是定义在R上以1为周期的函数,若g(x)=f(x)-2x在区间[2,3]上的值域为[-2,6],则函数g(x)在[-2012,2012]上的值域为( )
| A、[-2,6] |
| B、[-4030,4024] |
| C、[-4020,4034] |
| D、[-4028,4016] |
分式方程
=
的解是( )
| 5 |
| x-2 |
| 3 |
| x |
| A、x=3 | ||
| B、x=-3 | ||
C、x=
| ||
D、x=-
|