题目内容
16.求10cot(arc cot3+arccot7+arccot13+arccot21)的值.分析 由条件利用反正切函数的定义把要求的式子化为$\frac{10}{tan(arctan\frac{1}{3}+atctan\frac{1}{7}+arctan\frac{1}{13}+arctan\frac{1}{21})}$,再利用两角和差的正切公式求得该式子分母的值,可得该式子的值.
解答 解:10cot(arc cot3+arccot7+arccot13+arccot21)=$\frac{10}{tan(arctan\frac{1}{3}+atctan\frac{1}{7}+arctan\frac{1}{13}+arctan\frac{1}{21})}$,
∵tan(arctan$\frac{1}{3}$+arctan$\frac{1}{7}$)=$\frac{tan(arctan\frac{1}{3})+tan(arctan\frac{1}{7})}{1-tan(arctan\frac{1}{3})tan(arctan\frac{1}{7})}$=$\frac{\frac{1}{3}+\frac{1}{7}}{1-\frac{1}{3}•\frac{1}{7}}$=$\frac{1}{2}$,
tan(arctan$\frac{1}{13}$+arctan$\frac{1}{21}$)=$\frac{tan(arctan\frac{1}{13})+tan(arctan\frac{1}{21})}{1-tan(arctan\frac{1}{13})tan(arctan\frac{1}{21})}$=$\frac{\frac{1}{13}+\frac{1}{21}}{1-\frac{1}{13}•\frac{1}{21}}$=$\frac{1}{8}$,
∴tan[(arctan$\frac{1}{3}$+arctan$\frac{1}{7}$)+(arctan$\frac{1}{13}$+arctan$\frac{1}{21}$)]=$\frac{tan(arctan\frac{1}{3}+arctan\frac{1}{7})+tan(arctan\frac{1}{13}+arctan\frac{1}{21})}{1-tan(arctan\frac{1}{3}+arctan\frac{1}{7})tan(arctan\frac{1}{13}+arctan\frac{1}{21})}$
=$\frac{\frac{1}{2}+\frac{1}{8}}{1-\frac{1}{2}•\frac{1}{8}}$=$\frac{2}{3}$,
∴$\frac{10}{tan(arctan\frac{1}{3}+atctan\frac{1}{7}+arctan\frac{1}{13}+arctan\frac{1}{21})}$=$\frac{10}{\frac{2}{3}}$=15,
即10cot(arc cot3+arccot7+arccot13+arccot21)=15.
点评 本题主要考查反正切函数的定义,两角和差的正切公式的应用,属于中档题.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
| A. | -i | B. | i | C. | 1 | D. | -1 |
| A. | f(x)=x3 | B. | f(x)=-x-1 | C. | f(x)=log2x | D. | f(x)=2x |
| A. | c>0 | B. | c≥0 | C. | c<0 | D. | c≤0 |