题目内容
6.如果0<a<1<b,c=logab+logba+2( )| A. | c>0 | B. | c≥0 | C. | c<0 | D. | c≤0 |
分析 利用对数的性质以及基本不等式求解即可.
解答 解:0<a<1<b,logab<0,logba<0,
logab+logba=logab+$\frac{1}{lo{g}_{a}b}$=-(-logab-$\frac{1}{lo{g}_{a}b}$)≤-2$\sqrt{-lo{g}_{a}b•(-\frac{1}{lo{g}_{a}b})}$=-2.
当且仅当logab=-1时取等号,
logab+logba+2的取值范围:(-∞,0].
故选:D.
点评 本题考查对数的运算性质,基本不等式的应用,考查计算能力.
练习册系列答案
相关题目
3.
已知某几何体的三视图如图所示,则该几何体的表面积为( )
| A. | $\frac{5π}{2}+\sqrt{3}$ | B. | $\frac{3π}{2}+2$ | C. | $\frac{π}{2}+\sqrt{3}$ | D. | $\frac{3π}{2}+\sqrt{3}$ |
20.
某中学共有1000名学生参加考试,成绩如表:
(1)为了了解同学们的具体情况,学校将采取分层抽样的方法,抽取100名同学进行问卷调查,甲同学在本次测试中成绩为95分,求他被抽中的概率.
(2)本次数学成绩的优秀成绩为110分,试估计该中学达到优秀线的人数.
(3)作出频率分布直方图,并据此估计该校本次考试的平均分(用同一组中得到数据用该组区间的中点值作代表)
| 成绩分组 | [0,30) | [30,60) | [60,90) | [90,120) | [120,150) |
| 人 数 | 60 | 90 | 300 | x | 160 |
(2)本次数学成绩的优秀成绩为110分,试估计该中学达到优秀线的人数.
(3)作出频率分布直方图,并据此估计该校本次考试的平均分(用同一组中得到数据用该组区间的中点值作代表)